Naoko Oono

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3704072/publications.pdf

Version: 2024-02-01

430874 501196 53 894 18 28 h-index citations g-index papers 55 55 55 730 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Tensile properties of Co-added FeCrAl oxide dispersion strengthened alloy. Journal of Alloys and Compounds, 2021, 852, 156956.	5.5	6
2	Novel Cleaning Methodologies for Specimens Tested in Liquid Metals. Plasma and Fusion Research, 2021, 16, 1205015-1205015.	0.7	3
3	Microstructural stability and intermetallic embrittlement in high Al containing FeCrAl-ODS alloys. Materials Science & December 1985 and Processing, 2021, 807, 140858.	5. 6	14
4	Conceptual Design of HFIR Irradiation Experiment for Material Compatibility Study on Liquid Sn Divertor. Plasma and Fusion Research, 2021, 16, 2405040-2405040.	0.7	1
5	Radiation tolerance of alumina scale formed on FeCrAl ODS ferritic alloy. Nuclear Materials and Energy, 2021, 29, 101102.	1.3	7
6	Anomalous small-angle X-ray scattering (ASAXS) study of irradiation-induced nanostructure change in Fe-ion beam irradiated oxide dispersion-strengthened (ODS) steel. Journal of Nuclear Materials, 2020, 528, 151890.	2.7	1
7	The size dependence of microstructure and hardness on the MA powders for the MA-HIP processed Cu-Y2O3 dispersion-strengthened alloys. Nuclear Materials and Energy, 2020, 24, 100773.	1.3	6
8	Development of nano-oxide particles dispersed alumina scale formed on Zr-added FeCrAl ODS ferritic alloys. Nuclear Materials and Energy, 2020, 25, 100798.	1.3	6
9	Oxide Dispersion Strengthened Steels. , 2020, , 255-292.		4
10	Nano-oxide Particle Formation Mechanism and Stability in Oxide Dispersion Strengthened (ODS) Steel. Materia Japan, 2020, 59, 183-190.	0.1	0
11	Development of $\hat{l}\pm\hat{l}^3$ Transformable FeCrAl-ODS Alloys by Nickel Addition. Materials Transactions, 2019, 60, 355-363.	1.2	4
12	Precipitation of various oxides in ODS ferritic steels. Journal of Materials Science, 2019, 54, 8786-8799.	3.7	21
13	Development of Accident-Tolerant FeCrAl Steels Containing Al2O3 Particles by Means of Internal Al Oxidation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 1816-1824.	2.2	3
14	Brass-texture induced grain structure evolution in room temperature rolled ODS copper. Materials Science & Science amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 749, 118-128.	5 . 6	19
15	Development of accident tolerant FeCrAl-ODS steels utilizing Ce-oxide particles dispersion. Journal of Nuclear Materials, 2018, 502, 228-235.	2.7	27
16	Precipitation of Oxide Particles in Oxide Dispersion Strengthened (ODS) Ferritic Steels. Materials Transactions, 2018, 59, 1651-1658.	1.2	24
17	Effect of Cr on the Oxidation Resistance of Co-Based Oxide Dispersion Strengthened Superalloys. Materials Transactions, 2018, 59, 563-567.	1.2	6
18	Effect of Al content on the high-temperature oxidation of Co-20Cr-(5, 10)Al oxide dispersion strengthened superalloys. Corrosion Science, 2017, 118, 49-59.	6.6	34

#	Article	IF	CITATIONS
19	Tensile properties of Co-based oxide dispersion strengthened superalloys. Journal of Alloys and Compounds, 2017, 714, 715-724.	5. 5	11
20	Growth of oxide particles in FeCrAl- oxide dispersion strengthened steels at high temperature. Journal of Nuclear Materials, 2017, 493, 180-188.	2.7	42
21	Effects of annealing temperature on nanoscale particles in oxide dispersion strengthened Fe-15Cr alloy powders with Ti and Zr additions. Journal of Alloys and Compounds, 2017, 693, 177-187.	5.5	46
22	Effect of Cr/Al contents on the 475 \hat{A}^{o} C age-hardening in oxide dispersion strengthened ferritic steels. Nuclear Materials and Energy, 2016, 9, 610-615.	1.3	36
23	Oxide particle coarsening at temperature over 1473 K in 9CrODS steel. Nuclear Materials and Energy, 2016, 9, 342-345.	1.3	25
24	Microstructure characterization of Co–20Cr–(5,10)Al oxide dispersion strengthened superalloys. Materials Characterization, 2016, 112, 188-196.	4.4	13
25	Effect of the dilation caused by helium bubbles on edge dislocation motion in \hat{l} ±-iron: molecular dynamics simulation. Journal of Nuclear Science and Technology, 2016, 53, 1528-1534.	1.3	11
26	Dispersion and strength parameter of nano-sized bubbles in copper investigated by means of small-angle X-ray scattering and transmission electron microscopy. Materials Science & Description of Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 658, 296-300.	5.6	1
27	Microstructural stability of 11Cr ODS steel. Journal of Nuclear Materials, 2016, 472, 247-251.	2.7	11
28	Oxide particle refinement in Ni-based ODS alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 649, 250-253.	5.6	44
29	Irradiation effects in oxide dispersion strengthened (ODS) Ni-base alloys for Gen. IV nuclear reactors. Journal of Nuclear Materials, 2015, 465, 835-839.	2.7	30
30	High temperature deformation mechanism of 15CrODS ferritic steels at cold-rolled and recrystallized conditions. Journal of Nuclear Materials, 2015, 466, 653-657.	2.7	9
31	The microstructure characterization of reduced activation F82H–ODS ferritic steel. Journal of Nuclear Materials, 2014, 452, 212-217.	2.7	7
32	Synthesis of bubble dispersion strengthened copper by using pyrolysis gases of Poly (methyl) Tj ETQq0 0 0 rgBT Microstructure and Processing, 2014, 617, 61-65.	Overlock 5.6	10 Tf 50 227 2
33	Effect of heat treatment on the hardness and microstructure in Co–3Al–1.5Y2O3–1.2Hf ODS alloy. Materials Science & Description (Science & Description of the hardness and Processing, 2014, 601, 139-144.	5.6	6
34	Grain boundary sliding at high temperature deformation in cold-rolled ODS ferritic steels. Journal of Nuclear Materials, 2014, 452, 628-632.	2.7	21
35	Hot-rolling of reduced activation 8CrODS ferritic steel. Journal of Nuclear Materials, 2013, 443, 59-65.	2.7	1
36	γ″-Ni3Nb precipitate in Fe–Ni base alloy. Journal of Nuclear Materials, 2013, 442, 389-393.	2.7	15

#	Article	IF	Citations
37	Synthesis of nano-bubble dispersion strengthened (N-BDS) metal by PMMA dissociated polymer gases. Materials Science & Description (Regimeering A: Structural Materials: Properties, Microstructure and Processing, 2013, 582, 245-247.	5.6	4
38	Charpy impact properties of 9CrODS ferritic steels. Journal of Nuclear Materials, 2013, 442, S133-S137.	2.7	4
39	Irradiation effect of nano-bubble dispersion strengthened (N-BDS) alloy. Journal of Nuclear Materials, 2013, 442, 365-369.	2.7	1
40	Comparison of irradiation hardening and microstructure evolution in ion-irradiated delta and epsilon hydrides. Journal of Nuclear Materials, 2013, 442, S826-S829.	2.7	15
41	Ferrite Grain Coarsening from Hot Rolled Austenite in ODS Steels. Materials Science Forum, 2013, 753, 514-517.	0.3	0
42	Grain Boundary Related Deformation in ODS Ferritic Steel during Creep Test. Materials Transactions, 2012, 53, 1753-1757.	1.2	15
43	Hardness and Micro-Texture in Friction Stir Welds of a Nanostructured Oxide Dispersion Strengthened Ferritic Steel. Materials Transactions, 2012, 53, 390-394.	1.2	19
44	Effects of Two-Step Cold Rolling on Recrystallization Behaviors in ODS Ferritic Steel. Materials Transactions, 2012, 53, 652-657.	1.2	19
45	Oxide Particle Refinement in 4.5 mass%Al Ni-Based ODS Superalloys. Materials Transactions, 2012, 53, 645-651.	1.2	24
46	Microstructures of brazed and solid-state diffusion bonded joints of tungsten with oxide dispersion strengthened steel. Journal of Nuclear Materials, 2011, 417, 253-256.	2.7	36
47	Irradiation hardening and microstructure evolution of ion-irradiated Zr-hydride. Journal of Nuclear Materials, 2011, 419, 366-370.	2.7	12
48	Effects of iron concentration on the microstructure of $V\hat{a}\in \text{``Fe}$ alloys after low-dose neutron irradiation. Journal of Nuclear Materials, 2011, 418, 38-45.	2.7	4
49	Production of thick high-performance sintered neodymium magnets by grain boundary diffusion treatment with dysprosium–nickel–aluminum alloy. Journal of Magnetism and Magnetic Materials, 2011, 323, 297-300.	2.3	142
50	Evaluation of microstructure and mechanical properties of liquid phase diffusion bonded ODS steels. Fusion Engineering and Design, 2010, 85, 1033-1037.	1.9	18
51	Microstructural Evaluation of Dy-Ni-Al Grain-Boundary-Diffusion (GBD) Treatment on Sintered Nd-Fe-B Magnet. Materials Science Forum, 2010, 654-656, 2919-2922.	0.3	7
52	Diffusion of niobium in α-iron. Materials Transactions, 2003, 44, 2078-2083.	1.2	47
53	Joining of ODS Steels and Tungsten for Fusion Applications. Materials Science Forum, 0, 654-656, 2891-2894.	0.3	9