List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3703969/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature, 2012, 488, 213-217.	13.7	1,049
2	Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Dothideomycetes Fungi. PLoS Pathogens, 2012, 8, e1003037.	2.1	595
3	Finished Genome of the Fungal Wheat Pathogen Mycosphaerella graminicola Reveals Dispensome Structure, Chromosome Plasticity, and Stealth Pathogenesis. PLoS Genetics, 2011, 7, e1002070.	1.5	532
4	Azole resistance in Aspergillus fumigatus: a side-effect of environmental fungicide use?. Lancet Infectious Diseases, The, 2009, 9, 789-795.	4.6	524
5	Effector diversification within compartments of the Leptosphaeria maculans genome affected by Repeat-Induced Point mutations. Nature Communications, 2011, 2, 202.	5.8	481
6	Possible Environmental Origin of Resistance of <i>Aspergillus fumigatus</i> to Medical Triazoles. Applied and Environmental Microbiology, 2009, 75, 4053-4057.	1.4	390
7	Triazole Fungicides Can Induce Cross-Resistance to Medical Triazoles in Aspergillus fumigatus. PLoS ONE, 2012, 7, e31801.	1.1	320
8	The Genomes of the Fungal Plant Pathogens Cladosporium fulvum and Dothistroma septosporum Reveal Adaptation to Different Hosts and Lifestyles But Also Signatures of Common Ancestry. PLoS Genetics, 2012, 8, e1003088.	1.5	226
9	<l>Zymoseptoria</l> gen. nov.: a new genus to accommodate <l>Septoria-</l> like species occurring on graminicolous hosts. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2011, 26, 57-69.	1.6	183
10	A molecular diagnostic for tropical race 4 of the banana fusarium wilt pathogen. Plant Pathology, 2010, 59, 348-357.	1.2	178
11	Tomato Cf resistance proteins mediate recognition of cognate homologous effectors from fungi pathogenic on dicots and monocots. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7610-7615.	3.3	167
12	Worse Comes to Worst: Bananas and Panama Disease—When Plant and Pathogen Clones Meet. PLoS Pathogens, 2015, 11, e1005197.	2.1	167
13	Population Structure and Pathotype Diversity of the Wheat Blast Pathogen <i>Magnaporthe oryzae</i> 25 Years After Its Emergence in Brazil. Phytopathology, 2014, 104, 95-107.	1.1	144
14	Horizontal gene and chromosome transfer in plant pathogenic fungi affecting host range. FEMS Microbiology Reviews, 2011, 35, 542-554.	3.9	143
15	First Report of <i>Fusarium oxysporum</i> f. sp. <i>cubense</i> Tropical Race 4 Associated with Panama Disease of Banana outside Southeast Asia. Plant Disease, 2014, 98, 694-694.	0.7	130
16	A novel mode of chromosomal evolution peculiar to filamentous Ascomycete fungi. Genome Biology, 2011, 12, R45.	13.9	126
17	Meiosis Drives Extraordinary Genome Plasticity in the Haploid Fungal Plant Pathogen Mycosphaerella graminicola. PLoS ONE, 2009, 4, e5863.	1.1	122
18	New broad-spectrum resistance to septoria tritici blotch derived from synthetic hexaploid wheat. Theoretical and Applied Genetics, 2012, 124, 125-142.	1.8	106

#	Article	IF	CITATIONS
19	Stress and sexual reproduction affect the dynamics of the wheat pathogen effector AvrStb6 and strobilurin resistance. Nature Genetics, 2018, 50, 375-380.	9.4	96
20	Impact of Diseases on Export and Smallholder Production of Banana. Annual Review of Phytopathology, 2015, 53, 269-288.	3.5	81
21	Combating a Global Threat to a Clonal Crop: Banana Black Sigatoka Pathogen Pseudocercospora fijiensis (Synonym Mycosphaerella fijiensis) Genomes Reveal Clues for Disease Control. PLoS Genetics, 2016, 12, e1005876.	1.5	77
22	Effector discovery in the fungal wheat pathogen <i><scp>Z</scp>ymoseptoria tritici</i> . Molecular Plant Pathology, 2015, 16, 931-945.	2.0	76
23	The MAP kinase-encoding geneMgFus3of the non-appressorium phytopathogenMycosphaerella graminicolais required for penetration andin vitropycnidia formation. Molecular Plant Pathology, 2006, 7, 269-278.	2.0	75
24	First Report of <i>Fusarium oxysporum</i> f. sp. <i>cubense</i> Tropical Race 4 Causing Panama Disease in Cavendish Bananas in Pakistan and Lebanon. Plant Disease, 2016, 100, 209.	0.7	66
25	Genetic analysis of resistance to septoria tritici blotch in the French winter wheat cultivars Balance and Apache. Theoretical and Applied Genetics, 2011, 123, 741-754.	1.8	62
26	Molecular characterization and functional analyses of <i><scp>ZtWor1</scp></i> , a transcriptional regulator of the fungal wheat pathogen <i><scp>Z</scp>ymoseptoria tritici</i> . Molecular Plant Pathology, 2014, 15, 394-405.	2.0	60
27	Triazole fungicides and the selection of resistance to medical triazoles in the opportunistic mould <i>Aspergillus fumigatus</i> . Pest Management Science, 2013, 69, 165-170.	1.7	56
28	A wheat cysteine-rich receptor-like kinase confers broad-spectrum resistance against Septoria tritici blotch. Nature Communications, 2021, 12, 433.	5.8	55
29	Large-Scale Gene Discovery in the Septoria Tritici Blotch Fungus Mycosphaerella graminicola with a Focus on In Planta Expression. Molecular Plant-Microbe Interactions, 2008, 21, 1249-1260.	1.4	50
30	A dispensable paralog of succinate dehydrogenase subunit C mediates standing resistance towards a subclass of SDHI fungicides in Zymoseptoria tritici. PLoS Pathogens, 2019, 15, e1007780.	2.1	50
31	Gα and Gβ Proteins Regulate the Cyclic AMP Pathway That Is Required for Development and Pathogenicity of the Phytopathogen <i>Mycosphaerella graminicola</i> . Eukaryotic Cell, 2009, 8, 1001-1013.	3.4	45
32	Association mapping and meta-analysis: two complementary approaches for the detection of reliable Septoria tritici blotch quantitative resistance in bread wheat (Triticum aestivum L.). Molecular Breeding, 2013, 32, 563-584.	1.0	45
33	Protein kinase A subunits of the ascomycete pathogen Mycosphaerella graminicola regulate asexual fructification, filamentation, melanization and osmosensing. Molecular Plant Pathology, 2006, 7, 565-577.	2.0	40
34	FPLC and liquid-chromatography mass spectrometry identify candidate necrosis-inducing proteins from culture filtrates of the fungal wheat pathogen Zymoseptoria tritici. Fungal Genetics and Biology, 2015, 79, 54-62.	0.9	38
35	Electrophoretic and cytological karyotyping of the foliar wheat pathogen Mycosphaerella graminicola reveals many chromosomes with a large size range. Mycologia, 2007, 99, 868-876.	0.8	36
36	Positive selection and intragenic recombination contribute to high allelic diversity in effector genes of <i><scp>M</scp>ycosphaerella fijiensis</i> , causal agent of the black leaf streak disease of banana. Molecular Plant Pathology, 2014, 15, 447-460.	2.0	36

#	Article	IF	CITATIONS
37	Karyotype Variability in Plant-Pathogenic Fungi. Annual Review of Phytopathology, 2017, 55, 483-503.	3.5	36
38	Genetic mapping of Fusarium wilt resistance in a wild banana Musa acuminata ssp. malaccensis accession. Theoretical and Applied Genetics, 2020, 133, 3409-3418.	1.8	35
39	Transposon-tagging identifies novel pathogenicity genes in Fusarium graminearum. Fungal Genetics and Biology, 2008, 45, 1552-1561.	0.9	33
40	Phenotypic and genetic analysis of the <i>Triticum monococcum</i> – <i>Mycosphaerella graminicola </i> interaction. New Phytologist, 2008, 179, 1121-1132.	3.5	28
41	Meiotic drive of female-inherited supernumerary chromosomes in a pathogenic fungus. ELife, 2018, 7, .	2.8	28
42	The potential of high-resolution BAC-FISH in banana breeding. Euphytica, 2009, 166, 431-443.	0.6	25
43	The genetic architecture of seedling resistance to Septoria tritici blotch in the winter wheat doubled-haploid population SolitĂĦĂĂ—ÂMazurka. Molecular Breeding, 2012, 29, 813-830.	1.0	24
44	Discovery of a functional Mycosphaerella teleomorph in the presumed asexual barley pathogen Septoria passerinii. Fungal Genetics and Biology, 2007, 44, 389-397.	0.9	20
45	Development of a rapid multiplex SSR genotyping method to study populations of the fungal plant pathogen Zymoseptoria tritici. BMC Research Notes, 2014, 7, 373.	0.6	20
46	A loopâ€mediated isothermal amplificationÂ(LAMP) assay based on unique markers derived from genotyping by sequencing data for rapid <i>inÂplanta</i> diagnosis of Panama disease caused by Tropical Race 4 in banana. Plant Pathology, 2019, 68, 1682-1693.	1.2	19
47	The ZtVf1 transcription factor regulates development and virulence in the foliar wheat pathogen Zymoseptoria tritici. Fungal Genetics and Biology, 2017, 109, 26-35.	0.9	17
48	Proteome catalog of Zymoseptoria tritici captured during pathogenesis in wheat. Fungal Genetics and Biology, 2015, 79, 42-53.	0.9	16
49	Analyses of expressed sequence tags from the maize foliar pathogen Cercospora zeae-maydis identify novel genes expressed during vegetative, infectious, and reproductive growth. BMC Genomics, 2008, 9, 523.	1.2	12
50	Flexible gateway constructs for functional analyses of genes in plant pathogenic fungi. Fungal Genetics and Biology, 2015, 79, 186-192.	0.9	12
51	Appeal for funds to fight banana blight. Nature, 2013, 504, 218-218.	13.7	9
52	Phosphopantetheinyl transferase (Ppt)-mediated biosynthesis of lysine, but not siderophores or DHN melanin, is required for virulence of Zymoseptoria tritici on wheat. Scientific Reports, 2018, 8, 17069.	1.6	9
53	Comment on: Low prevalence of resistance to azoles in Aspergillus fumigatus in a French cohort of patients treated for haematological malignancies. Journal of Antimicrobial Chemotherapy, 2011, 66, 954-955.	1.3	8
54	A worldâ€wide analysis of reduced sensitivity to <scp>DMI</scp> fungicides in the banana pathogen <i>Pseudocercospora fijiensis</i> . Pest Management Science, 2021, 77, 3273-3288.	1.7	8

#	Article	IF	CITATIONS
55	Pfcyp51 exclusively determines reduced sensitivity to 14α-demethylase inhibitor fungicides in the banana black Sigatoka pathogen Pseudocercospora fijiensis. PLoS ONE, 2019, 14, e0223858.	1.1	7
56	Karyotyping Methods for Fungi. Methods in Molecular Biology, 2012, 835, 591-602.	0.4	6
57	Equal Distribution of Mating Type Alleles and the Presence of Strobilurin Resistance in Algerian <i>Zymoseptoria tritici</i> Field Populations. Plant Disease, 2017, 101, 544-549.	0.7	6
58	Agrobacterium tumefaciens-mediated transformation of Lasiodiplodia theobromae, the causal agent of gummosis in cashew nut plants. Genetics and Molecular Research, 2014, 13, 2906-13.	0.3	5
59	Tagging pathogenicity genes in <i>Fusarium graminearum</i> using the transposon system <i>mimp/impala</i> . Cereal Research Communications, 2008, 36, 415-419.	0.8	3
60	Genome-wide BAC-end sequencing of Musa acuminata DH Pahang reveals further insights into the genome organization of banana. Tree Genetics and Genomes, 2011, 7, 933-940.	0.6	3
61	MAP Kinase Phosphorylation and cAMP Assessment in Fungi. Methods in Molecular Biology, 2012, 835, 571-583.	0.4	3
62	Polyclonal antibodyâ€based <scp>ELISA</scp> in combination with specific <scp>PCR</scp> amplification of internal transcribed spacer regions for the detection and quantitation of <i><scp>L</scp>asiodiplodia <scp>t</scp>heobromae</i> , causal agent of gummosis in cashew nut plants. Annals of Applied Biology, 2012, 160, 217-224.	1.3	3
63	Genomics of Plant-Associated Fungi: Monocot Pathogens. , 2014, , .		3
64	Targeted and random genetic modification of the black Sigatoka pathogen Pseudocercospora fijiensis by Agrobacterium tumefaciens -mediated transformation. Journal of Microbiological Methods, 2018, 148, 127-137.	0.7	3
65	Front Cover Image, Volume 77, Issue 7. Pest Management Science, 2021, 77, i.	1.7	0