
Lucie Skarydova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3703926/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	AKR1C3 as a potential target for the inhibitory effect of dietary flavonoids. Chemico-Biological Interactions, 2009, 178, 138-144.	4.0	56
2	Deeper Insight into the Reducing Biotransformation of Bupropion in the Human Liver. Drug Metabolism and Pharmacokinetics, 2014, 29, 177-184.	2.2	38
3	Human microsomal carbonyl reducing enzymes in the metabolism of xenobiotics: well-known and promising members of the SDR superfamily. Drug Metabolism Reviews, 2012, 44, 173-191.	3.6	33
4	Role of carbonyl reducing enzymes in the phase I biotransformation of the non-steroidal anti-inflammatory drug nabumetone <i>in vitro</i> . Xenobiotica, 2013, 43, 346-354.	1.1	33
5	Flavones Inhibit the Activity of AKR1B10, a Promising Therapeutic Target for Cancer Treatment. Journal of Natural Products, 2015, 78, 2666-2674.	3.0	31
6	Anthracyclines and their metabolism in human liver microsomes and the participation of the new microsomal carbonyl reductase. Chemico-Biological Interactions, 2011, 191, 66-74.	4.0	29
7	Isoquinoline alkaloids as a novel type of AKR1C3 inhibitors. Journal of Steroid Biochemistry and Molecular Biology, 2014, 143, 250-258.	2.5	27
8	Biochemical properties of human dehydrogenase/reductase (SDR family) member 7. Chemico-Biological Interactions, 2014, 207, 52-57.	4.0	23
9	Imbalance in redox system of rat liver following permethrin treatment in adolescence and neonatal age. Xenobiotica, 2013, 43, 1103-1110.	1.1	18
10	Human DHRS7, promising enzyme in metabolism of steroids and retinoids?. Journal of Steroid Biochemistry and Molecular Biology, 2016, 155, 112-119.	2.5	17
11	Benzothiazolyl Ureas are Low Micromolar and Uncompetitive Inhibitors of 17β-HSD10 with Implications to Alzheimer's Disease Treatment. International Journal of Molecular Sciences, 2020, 21, 2059.	4.1	14
12	Molecular and biochemical characterisation of human short-chain dehydrogenase/reductase member 3 (DHRS3). Chemico-Biological Interactions, 2015, 234, 178-187.	4.0	13
13	Partial purification and characterization of a new human membrane-bound carbonyl reductase playing a role in the deactivation of the anticancer drug oracin. Toxicology, 2009, 264, 52-60.	4.2	12
14	Smallâ€molecule inhibitors of cyclophilin D as potential therapeutics in mitochondriaâ€related diseases. Medicinal Research Reviews, 2022, 42, 1822-1855.	10.5	11
15	Purification and reconstitution of human membrane-bound DHRS7 (SDR34C1) from Sf9 cells. Protein Expression and Purification, 2014, 95, 44-49.	1.3	8
16	Initial characterization of human DHRS1 (SDR19C1), a member of the short-chain dehydrogenase/reductase superfamily. Journal of Steroid Biochemistry and Molecular Biology, 2019, 185, 80-89.	2.5	7
17	Enzyme Stereospecificity as a Powerful Tool in Searching for New Enzymes. Current Drug Metabolism, 2010, 11, 547-559.	1.2	6
18	Human dehydrogenase/reductase (SDR family) member 8 (DHRS8): a description and evaluation of its biochemical properties. Molecular and Cellular Biochemistry, 2016, 411, 35-42.	3.1	6

LUCIE SKARYDOVA

#	Article	IF	CITATIONS
19	AKR1C3 Inhibitory Potency of Naturally-occurring Amaryllidaceae Alkaloids of Different Structural Types. Natural Product Communications, 2017, 12, 1934578X1701200.	0.5	5
20	A Simple Identification of Novel Carbonyl Reducing Enzymes in the Metabolism of the Tobacco Specific Carcinogen NNK. Drug Metabolism Letters, 2013, 6, 174-181.	0.8	5
21	Ubiquinol-10/lipids ratios in consecutive patients with different angiographic findings. Clinica Chimica Acta, 2007, 380, 133-138.	1.1	4
22	The identification of new substrates of human DHRS7 by molecular modeling and in vitro testing. International Journal of Biological Macromolecules, 2017, 105, 171-182.	7.5	4
23	RNase T1 Refolding Assay for Determining Mitochondrial Cyclophilin D Activity: A Novel <i>In Vitro</i> Method Applicable in Drug Research and Discovery. Biochemistry, 2020, 59, 1680-1687.	2.5	3
24	Efficient isolation of carbonylâ€reducing enzymes using affinity approach with anticancer drug oracin as a specific ligand. Journal of Separation Science, 2013, 36, 1176-1184.	2.5	2
25	Carbonyl-reducing enzymes as targets of a drug-immobilised affinity carrier. Chemico-Biological Interactions, 2015, 234, 169-177.	4.0	2