
## Chaolun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3703068/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Metallic few-layered VSe <sub>2</sub> nanosheets: high two-dimensional conductivity for flexible<br>in-plane solid-state supercapacitors. Journal of Materials Chemistry A, 2018, 6, 8299-8306. | 10.3 | 89        |
| 2  | In Situ Transmission Electron Microscopy Characterization and Manipulation of Twoâ€Dimensional<br>Layered Materials beyond Graphene. Small, 2017, 13, 1604259.                                  | 10.0 | 75        |
| 3  | Facile fabrication of paper-based flexible thermoelectric generator. Npj Flexible Electronics, 2021, 5, .                                                                                       | 10.7 | 41        |
| 4  | Raman spectroscopy characterization of two-dimensional materials. Chinese Physics B, 2018, 27, 037802.                                                                                          | 1.4  | 38        |
| 5  | VSe2/carbon-nanotube compound for all solid-state flexible in-plane supercapacitor. Applied Physics<br>Letters, 2019, 114, .                                                                    | 3.3  | 34        |
| 6  | In Situ Dynamic Manipulation of Graphene Strain Sensor with Drastically Sensing Performance<br>Enhancement. Advanced Electronic Materials, 2020, 6, 2000269.                                    | 5.1  | 23        |
| 7  | Probing and Manipulating the Interfacial Defects of InGaAs Dualâ€Layer Metal Oxides at the Atomic<br>Scale. Advanced Materials, 2018, 30, 1703025.                                              | 21.0 | 21        |
| 8  | Raman Characterization on Two-Dimensional Materials-Based Thermoelectricity. Molecules, 2019, 24,<br>88.                                                                                        | 3.8  | 19        |
| 9  | Analog Sensing and Computing Systems with Low Power Consumption for Gesture Recognition.<br>Advanced Intelligent Systems, 2021, 3, 2000184.                                                     | 6.1  | 19        |
| 10 | Iron-doped VSe2 nanosheets for enhanced hydrogen evolution reaction. Applied Physics Letters, 2020,<br>116, .                                                                                   | 3.3  | 18        |
| 11 | Tuning Electrical and Optical Properties of MoSe <sub>2</sub> Transistors via Elemental Doping.<br>Advanced Materials Technologies, 2020, 5, 2000307.                                           | 5.8  | 15        |
| 12 | RGO-Protected Electroless Plated Nickel Electrode with Enhanced Stability Performance for Flexible<br>Micro-Supercapacitors. ACS Applied Energy Materials, 2018, 1, 7182-7190.                  | 5.1  | 12        |
| 13 | Magnetic and magnetocaloric properties of DyCo2Cx alloys. Journal of Alloys and Compounds, 2019,<br>777, 152-156.                                                                               | 5.5  | 11        |
| 14 | Highâ€performance flexible humidity sensors for breath detection and nonâ€ŧouch switches. Nano Select,<br>2022, 3, 1168-1177.                                                                   | 3.7  | 10        |
| 15 | In Situ Interfacial Sublimation of Zn <sub>2</sub> GeO <sub>4</sub> Nanowire for Atomic-Scale<br>Manufacturing. ACS Applied Nano Materials, 2020, 3, 4747-4754.                                 | 5.0  | 8         |
| 16 | Infrared Gesture Recognition System Based on Near-Sensor Computing. IEEE Electron Device Letters, 2021, 42, 1053-1056.                                                                          | 3.9  | 8         |
| 17 | Direct Visualization of Breakdown-Induced Metal Migration in Enhanced Modified Lateral<br>Silicon-Controlled Rectifiers. IEEE Transactions on Electron Devices, 2021, 68, 1378-1381.            | 3.0  | 8         |
| 18 | VSe2 quantum dots with high-density active edges for flexible efficient hydrogen evolution reaction.<br>Journal Physics D: Applied Physics, 2021, 54, 214006.                                   | 2.8  | 6         |

CHAOLUN WANG

| #  | Article                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A revew of in situ transmission electron microscopy study on the switching mechanism and packaging reliability in non-volatile memory. Journal of Semiconductors, 2021, 42, 013102.        | 3.7  | 6         |
| 20 | The Trends of In Situ Focused Ion Beam Technology: Toward Preparing Transmission Electron<br>Microscopy Lamella and Devices at the Atomic Scale. Advanced Electronic Materials, 2022, 8, . | 5.1  | 6         |
| 21 | Tailoring atomic 1T phase CrTe <sub>2</sub> for in situ fabrication. Nanotechnology, 2022, 33, 085302.                                                                                     | 2.6  | 5         |
| 22 | High Throughput In–Situ Temperature Sensor Array with High Sensitivity and Excellent Linearity for<br>Wireless Body Temperature Monitoring. Small Structures, 2022, 3, .                   | 12.0 | 5         |
| 23 | Object Identification With Smart Glove Assembled by Pressure Sensors. , 2021, 5, 1-4.                                                                                                      |      | 4         |
| 24 | Review of electrical stimulus methods of <i>in situ</i> transmission electron microscope to study resistive random access memory. Nanoscale, 2022, 14, 9542-9552.                          | 5.6  | 4         |
| 25 | Interfacial Defects: Probing and Manipulating the Interfacial Defects of InGaAs Dual‣ayer Metal Oxides<br>at the Atomic Scale (Adv. Mater. 2/2018). Advanced Materials, 2018, 30, 1870013. | 21.0 | 1         |
| 26 | Failure Analysis on Diode-triggered Silicon-Controlled Rectifiers By using Nondestructive X-ray Microscopy. , 2021, , .                                                                    |      | 1         |
| 27 | Analysis of nano-filament evolution in Ni-based RRAM devices using in-situ TEM. , 2016, , .                                                                                                |      | 0         |
| 28 | Probing and manipulating the interfacial defects of InGaAs dual-layer metal oxides at the atomic scale. , 2018, , .                                                                        |      | 0         |
| 29 | Thermal reliability study of graphene-based planar RRAM. , 2020, , .                                                                                                                       |      | 0         |
| 30 | Reliability study of flexible sodium-ion detection sensor. , 2020, , .                                                                                                                     |      | 0         |
| 31 | Metal Migration Induced Breakdown from Gate Contact in Bulk FinFET Devices. , 2021, , .                                                                                                    |      | 0         |
| 32 | Nanoscale Analysis of Breakdown Induced Crack Propagation in DTSCR Devices. , 2022, , .                                                                                                    |      | 0         |