Ze Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/370295/publications.pdf

Version: 2024-02-01

86 papers	2,327 citations	27 h-index	223531 46 g-index
87	87	87	1298
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	W-band simultaneous vector signal generation and radar detection based on photonic frequency quadrupling. Optics Letters, 2022, 47, 537.	1.7	20
2	Symbol division multiplexing in optical fiber communication systems. Optics Express, 2022, 30, 14998.	1.7	4
3	Probabilistic shaping PAM8 based on Huffman coding distribution matching in optical interconnection. Journal of Modern Optics, 2022, 69, 693-698.	0.6	O
4	DMT Transmission in Short-Reach Optical Interconnection Employing a Novel Bit-Class Probabilistic Shaping Scheme. Journal of Lightwave Technology, 2021, 39, 98-104.	2.7	16
5	Photonics-assisted joint high-speed communication and high-resolution radar detection system. Optics Letters, 2021, 46, 6103.	1.7	13
6	DFT-Spread DMT-WDM-PON Employing LDPC-Coded Probabilistic Shaping 16 QAM. Journal of Lightwave Technology, 2020, 38, 714-722.	2.7	9
7	LDPC-Coded Probabilistic Shaping PAM8 Employing a Novel Bit-Weighted Distribution Matching in WDM-PON. Journal of Lightwave Technology, 2020, 38, 4641-4647.	2.7	5
8	Probabilistic Shaping 44QAM Based on Many-to-One Mapping in DMT-WDM-PON. IEEE Photonics Technology Letters, 2020, 32, 639-642.	1.3	9
9	Enhancement of Spectral Efficiency and Power Budget in WDN-PON Employing LDPC-Coded Probabilistic Shaping PAM8. IEEE Access, 2020, 8, 45766-45773.	2.6	12
10	LDPC-coded Probabilistic Shaping PAM4 Based on Many-to-One Mapping in WDM-PON. Journal of Lightwave Technology, 2020, , 1-1.	2.7	8
11	Low-complexity probabilistic shaping based on bit-weighted distribution matching in DMT-WDM-PON. Optics Express, 2020, 28, 21814.	1.7	4
12	Delivering Dual Polarization-Division-Multiplexing Millimeter-Wave Signals at W-Band by One Pair of Antennas. IEEE Photonics Journal, 2019, 11, 1-10.	1.0	3
13	A Novel CAP-WDM-PON Employing Multi-Band DFT-Spread DMT Signals Based on Optical Hilbert-Transformed SSB Modulation. IEEE Access, 2019, 7, 29397-29404.	2.6	14
14	LDPC-coded DFT-Spread DMT signal transmission employing probabilistic shaping 16/32QAM for optical interconnection. Optics Express, 2019, 27, 9821.	1.7	18
15	100G DFT-spread OFDM-WDM-PON based on probabilistic shaped 16QAM., 2019,,.		O
16	Experimental demonstration of WDM-PON based on probabilistic shaped PAM4 modulation format. , 2019, , .		0
17	Experimental comparison of discrete Fourier transform-spread high-order quadrature amplitude modulation discrete multitone systems for optical interconnection. Optical Engineering, 2019, 58, 1.	0.5	1
18	Experimental demonstration of wavelength-division-multiplexing passive optical network employing probabilistic shaping 4-level pulse amplitude modulation. Optical Engineering, 2019, 58, 1.	0.5	0

#	Article	IF	CITATIONS
19	A Novel Radio-Over-Fiber System Based on Carrier Suppressed Frequency Eightfold Millimeter Wave Generation. IEEE Photonics Journal, 2017, 9, 1-6.	1.0	26
20	Dynamic probabilistic shaping modulation based on fixed-to-fixed symbols projection constant composition distribution matching. , 2017, , .		1
21	64QAM Vector Radio-Frequency Signal Generation Based on Phase Precoding and Optical Carrier Suppression Modulation. IEEE Photonics Journal, 2016, 8, 1-7.	1.0	13
22	Bandwidth-Efficient Modulation for Hybrid 10G/100G Optical Communication Networks. IEEE Photonics Technology Letters, 2016, 28, 469-472.	1.3	4
23	Very-High-Throughput Coherent Ultradense WDM-PON Based on Nyquist-ISB Modulation. IEEE Photonics Technology Letters, 2015, 27, 763-766.	1.3	21
24	Multiservice Wireless Transport Over RoF Link With Colorless BS Using PolM-to-IM Convertor. IEEE Photonics Technology Letters, 2015, 27, 403-406.	1.3	12
25	Dual-Wavelength Single-Longitudinal-Mode Tm-Doped Fiber Laser Using PM-CMFBG. IEEE Photonics Technology Letters, 2015, 27, 951-954.	1.3	78
26	Non-overlapping downlink and uplink wavelength reuse in WDM-PON employing microwave photonic techniques. , 2014 , , .		2
27	A bandwidth-efficient coherent ultra-dense WDM-PON based on Nyquist independent-sideband modulation. , 2014, , .		2
28	Photonic microwave-signal-mixing technique using phase-coherent orthogonal optical carriers for radio-over-fiber application. Optics Letters, 2014, 39, 5263.	1.7	25
29	Demonstration of DFT-spread 256QAM-OFDM signal transmission with cost-effective directly modulated laser. Optics Express, 2014, 22, 8742.	1.7	39
30	Optical independent-sideband modulation for bandwidth-economic coherent transmission. Optics Express, 2014, 22, 9465.	1.7	28
31	Tunable Dual-Wavelength Thulium-Doped Fiber Laser by Employing a HB-FBG. IEEE Photonics Technology Letters, 2014, 26, 1809-1812.	1.3	39
32	Demonstration of 54.8-GHz radio-over-fiber system with wavelength reuse based on distributed intensity conversion. , 2014 , , .		0
33	Generation of a frequency sextupled optical millimeter wave with a suppressed central carrier using one single-electrode modulator. Optical Fiber Technology, 2014, 20, 533-536.	1.4	14
34	Orthogonal Single-Sideband Signal Generation Using Improved Sagnac-Loop-Based Modulator. IEEE Photonics Technology Letters, 2014, 26, 2229-2231.	1.3	14
35	Theoretical and experimental study on wavelength conversion based on FWM for PDM–QPSK signals with digital coherent detection in HNLF. Optics Communications, 2014, 316, 161-167.	1.0	6
36	Multichannel 120-Gb/s Data Transmission Over 2\$,imes,\$2 MIMO Fiber-Wireless Link at W-Band. IEEE Photonics Technology Letters, 2013, 25, 780-783.	1.3	151

#	Article	IF	CITATIONS
37	Real-time dual-band wireless videos in millimeter-wave radio-over-fiber system. Optical Fiber Technology, 2013, 19, 529-532.	1.4	4
38	Fiber-Wireless Transmission System of PDM-MIMO-OFDM at 100 GHz Frequency. Journal of Lightwave Technology, 2013, 31, 2394-2399.	2.7	65
39	Multi-Modulus Blind Equalizations for Coherent Quadrature Duobinary Spectrum Shaped PM-QPSK Digital Signal Processing. Journal of Lightwave Technology, 2013, 31, 1073-1078.	2.7	55
40	8\$,imes,\$9.95-Gb/s Ultra-Dense WDM-PON on a 12.5-GHz Grid With Digital Pre-Equalization. IEEE Photonics Technology Letters, 2013, 25, 194-197.	1.3	18
41	Digital Nonlinear Compensation Based on the Modified Logarithmic Step Size. Journal of Lightwave Technology, 2013, 31, 3546-3555.	2.7	25
42	Joint Digital Preequalization for Spectrally Efficient Super Nyquist-WDM Signal. Journal of Lightwave Technology, 2013, 31, 3237-3242.	2.7	16
43	Doubling transmission capacity in optical wireless system by antenna horizontal- and vertical-polarization multiplexing. Optics Letters, 2013, 38, 2125.	1.7	35
44	Heterodyne coherent detection of WDM PDM-QPSK signals with spectral efficiency of 4b/s/Hz. Optics Express, 2013, 21, 8808.	1.7	20
45	Nonlinear compensation and crosstalk suppression for 4 \tilde{A} — 1608Gb/s WDM PDM-QPSK signal with heterodyne detection. Optics Express, 2013, 21, 9230.	1.7	11
46	$11~{ m \widetilde{A}}-5~{ m \widetilde{A}}-93$ Gb/s WDM-CAP-PON based on optical single-side band multi-level multi-band carrier-less amplitude and phase modulation with direct detection. Optics Express, 2013, 21, 18842.	1.7	92
47	Transmission of 8 $ ilde{A}$ — 480-Gb/s super-Nyquist-filtering 9-QAM-like signal at 100 GHz-grid over 5000-km SMF-28 and twenty-five 100 GHz-grid ROADMs. Optics Express, 2013, 21, 15686.	1.7	53
48	A 400G optical wireless integration delivery system. Optics Express, 2013, 21, 18812.	1.7	141
49	Investigation of interference in multiple-input multiple-output wireless transmission at W band for an optical wireless integration system. Optics Letters, 2013, 38, 742.	1.7	39
50	Generation and transmission of 8 \tilde{A} — 112-Gb/s WDM PDM-16QAM on a 25-GHz grid with simplified heterodyne detection. Optics Express, 2013, 21, 1773.	1.7	19
51	Photonics Millimeter-Wave Generation in the E-Band and Bidirectional Transmission. IEEE Photonics Journal, 2013, 5, 7900107-7900107.	1.0	11
52	Transmission of 200 G PDM-CSRZ-QPSK and PDM-16 QAM With a SE of 4 b/s/Hz. Journal of Lightwave Technology, 2013, 31, 515-522.	2.7	46
53	Robust 9-QAM digital recovery for spectrum shaped coherent QPSK signal. Optics Express, 2013, 21, 7216.	1.7	14
54	Integration of 112-Gb/s PDM-16QAM Wireline and Wireless Data Delivery in Millimeter Wave RoF System. , 2013, , .		20

#	Article	IF	Citations
55	Super-Nyquist shaping and processing technologies for high-spectral-efficiency optical systems. Proceedings of SPIE, 2013, , .	0.8	1
56	Photonics Millimeter-wave Generation in the E-band (66~88GHz) and Bi-directional Transmission. , 2013, , .		3
57	Performance Improvement by Pre-equalization in W-band (75–110GHz) RoF System. , 2013, , .		7
58	Multi modulus Blind Equalizations for Coherent Spectrum Shaped PolMux Quadrature Duobinary Signal Processing. , 2013, , .		2
59	Multi-channel Optical Frequency-locked Multi-carrier Source Generation based on Multi-channel Recirculation Frequency Shifter Loop. , 2013, , .		1
60	Nonlinear Compensation and Inter-channel Crosstalk Suppression for 4Ã -160.8Gb/s DWDM PDM-QPSK signal with Heterodyne Coherent Detection. , 2013, , .		0
61	Flattened Optical Comb Generation using only Phase Modulators Driven by Single Fundamental Frequency Sinusoidal Sources with Small Frequency Offset. , 2013, , .		1
62	Fiber-wireless transmission system of 108  Gb/sdata over 80Âkm fiber and 2×2multiple-input multiple-output wireless links at 100ÂGHz W-band frequency. Optics Letters, 2012, 37, 5106.	1.7	194
63	WDM transmission of 1084-Gbaud PDM-QPSK signals (40 \tilde{A} — 4336-Gb/s) over 2800-km SMF-28 with EDFA-only. Optics Express, 2012, 20, B217.	1.7	4
64	Improved multi-channel multi-carrier generation using gain-independent multi-channel frequency shifting recirculating loop. Optics Express, 2012, 20, 29599.	1.7	7
65	The reduction of the LO number for heterodyne coherent detection. Optics Express, 2012, 20, 29613.	1.7	16
66	Multichannel optical frequency-locked multicarrier source generation based on multichannel recirculation frequency shifter loop. Optics Letters, 2012, 37, 4714.	1.7	13
67	Multi-channel multi-carrier generation using multi-wavelength frequency shifting recirculating loop. Optics Express, 2012, 20, 21833.	1.7	33
68	Seamless integration of 572-Gb/s signal wireline transmission and 100-GHz wireless delivery. Optics Express, 2012, 20, 24364.	1.7	25
69	Theoretical and Experimental Study on Improved Frequency-Locked Multicarrier Generation by Using Recirculating Loop Based on Multifrequency Shifting Single-Sideband Modulation. IEEE Photonics Journal, 2012, 4, 2249-2261.	1.0	9
70	7-Tb/s \$(7imes1.284~{m Tb}/{m s}/{m ch})\$ Signal Transmission Over 320 km Using PDM-64QAM Modulation. IEEE Photonics Technology Letters, 2012, 24, 264-266.	1.3	29
71	Experimental Demonstration of 48-Gb/s PDM-QPSK Radio-Over-Fiber System Over 40-GHz mm-Wave MIMO Wireless Transmission. IEEE Photonics Technology Letters, 2012, 24, 2276-2279.	1.3	43
72	Field Transmission of 100 G and Beyond: Multiple Baud Rates and Mixed Line Rates Using Nyquist-WDM Technology. Journal of Lightwave Technology, 2012, 30, 3793-3804.	2.7	37

#	Article	IF	CITATION
73	Performance Assessment of Noise-Suppressed Nyquist-WDM for Terabit Superchannel Transmission. Journal of Lightwave Technology, 2012, 30, 3965-3971.	2.7	38
74	6\$,imes,\$144-Gb/s Nyquist-WDM PDM-64QAM Generation and Transmission on a 12-GHz WDM Grid Equipped With Nyquist-Band Pre-Equalization. Journal of Lightwave Technology, 2012, 30, 3687-3692.	2.7	42
75	7\$,imes,\$224 Gb/s/ch Nyquist-WDM Transmission Over 1600-km SMF-28 Using PDM-CSRZ-QPSK Modulation. IEEE Photonics Technology Letters, 2012, 24, 1157-1159.	1.3	21
76	Simplified coherent receiver with heterodyne detection of eight-channel 50  Gb/s PDM-QPSK WDM signal after 1040Âkm SMF-28 transmission. Optics Letters, 2012, 37, 4050.	1.7	62
77	6\$,imes,\$128-Gb/s Nyquist-WDM PDM-16QAM Generation and Transmission Over 1200-km SMF-28 With SE of 7.47 b/s/Hz. Journal of Lightwave Technology, 2012, 30, 4000-4005.	2.7	27
78	Generation of Coherent and Frequency-Locked Multi-Carriers Using Cascaded Phase Modulators for 10 Tb/s Optical Transmission System. Journal of Lightwave Technology, 2012, 30, 458-465.	2.7	58
79	Field Trial Nyquist-WDM Transmission of 8#x000D7;216.4Gb/s PDM-CSRZ-QPSK Exceeding 4b/s/Hz Spectral Efficiency. , 2012, , .		6
80	1.96 Tb/s (21\$,imes,\$100 Gb/s) OFDM Optical Signal Generation and Transmission Over 3200-km Fiber. IEEE Photonics Technology Letters, 2011, 23, 1061-1063.	1.3	43
81	Ultra-dense WDM-PON delivering carrier-centralized Nyquist-WDM uplink with digital coherent detection. Optics Express, 2011, 19, 11100.	1.7	31
82	Generation of full C-band coherent and frequency-lock multi-carriers by using recirculating frequency shifter loops based on phase modulator with external injection. Optics Express, 2011, 19, 26370.	1.7	21
83	Direct-Detection Optical OFDM Transmission System Without Frequency Guard Band. IEEE Photonics Technology Letters, 2010, 22, 736-738.	1.3	103
84	Cost-Effective Optical Millimeter Technologies and Field Demonstrations for Very High Throughput Wireless-Over-Fiber Access Systems. Journal of Lightwave Technology, 2010, 28, 2376-2397.	2.7	112
85	Polarization insensitive all-optical up-conversion for ROF systems based on parallel pump FWM in a SOA. Optics Express, 2009, 17, 6962.	1.7	19
86	Optical Front-Ends to Generate Optical Millimeter-Wave Signal in Radio-Over-Fiber Systems With Different Architectures, Journal of Lightwave Technology, 2007, 25, 3381-3387.	2.7	23