List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3702896/publications.pdf Version: 2024-02-01

Μινι-Ηιτί Ρανι

#	Article	IF	CITATIONS
1	Geminin is essential for DNA re-replication in the silk gland cells of silkworms. Experimental Cell Research, 2022, 410, 112951.	1.2	3
2	The dual roles of three MMPs and TIMP in innate immunity and metamorphosis in the silkworm, <i>Bombyx mori</i> . FEBS Journal, 2022, 289, 2828-2846.	2.2	5
3	Stable transformation of fluorescent proteins into Nosema bombycis by electroporation. Parasites and Vectors, 2022, 15, 141.	1.0	2
4	Gene editing the BmNPV inhibitor of apoptosis protein 2 (iap2) as an antiviral strategy in transgenic silkworm. International Journal of Biological Macromolecules, 2021, 166, 529-537.	3.6	11
5	Genetic bioengineering of overexpressed guanylate binding protein family BmAtlastin-n enhances silkworm resistance to Nosema bombycis. International Journal of Biological Macromolecules, 2021, 172, 223-230.	3.6	5
6	Transcriptome analysis reveals changes in silkworm energy metabolism during Nosema bombycis infection. Pesticide Biochemistry and Physiology, 2021, 174, 104809.	1.6	11
7	A Matrix Metalloproteinase Mediates Tracheal Development in Bombyx mori. International Journal of Molecular Sciences, 2021, 22, 5618.	1.8	5
8	Silver nanoparticles are effective in controlling microsporidia. Materials Science and Engineering C, 2021, 125, 112106.	3.8	6
9	Bombyx mori cell division cycle protein 37 promotes the proliferation of BmNPV. Pesticide Biochemistry and Physiology, 2021, 178, 104923.	1.6	2
10	Construction of a CRISPR/FnCas12a multi-sites editing system for inhibiting proliferation of Bombyx mori nuclearpolyhedrosisvirus. International Journal of Biological Macromolecules, 2021, 193, 585-591.	3.6	1
11	Nosema bombycis microRNA-like RNA 8 (Nb-milR8) Increases Fungal Pathogenicity by Modulating <i>BmPEX16</i> Gene Expression in Its Host, Bombyx mori. Microbiology Spectrum, 2021, 9, e0104821.	1.2	10
12	E2F4 regulates the cell cycle and DNA replication in the silkworm, Bombyx mori. Insect Science, 2021, , .	1.5	2
13	Bombyx mori Nucleopolyhedrovirus (BmNPV) Induces G2/M Arrest to Promote Viral Multiplication by Depleting BmCDK1. Insects, 2021, 12, 1098.	1.0	3
14	MicroRNA-6498-5p Inhibits Nosema bombycis Proliferation by Downregulating BmPLPP2 in Bombyx mori. Journal of Fungi (Basel, Switzerland), 2021, 7, 1051.	1.5	4
15	Identification of a <i>PP2A</i> gene in <i>Bombyx mori</i> with antiviral function against <i>B. mori</i> nucleopolyhedrovirus. Insect Science, 2020, 27, 687-696.	1.5	12
16	Evolutionary and functional analyses of the interaction between the <i>Bombyx mori</i> inhibitor of apoptosis (IAP) and nucleopolyhedrovirus IAPs. Insect Science, 2020, 27, 463-474.	1.5	15
17	Comparative genome-wide DNA methylation analysis reveals epigenomic differences in response to heat-humidity stress in Bombyx mori. International Journal of Biological Macromolecules, 2020, 164, 3771-3779.	3.6	9
18	CRISPR/Cas12a Mediated Genome Editing Enhances Bombyx mori Resistance to BmNPV. Frontiers in Bioengineering and Biotechnology, 2020, 8, 841.	2.0	24

#	Article	IF	CITATIONS
19	BmFoxO Gene Regulation of the Cell Cycle Induced by 20-Hydroxyecdysone in BmN-SWU1 Cells. Insects, 2020, 11, 700.	1.0	3
20	A novel system to rapidly detect protein–protein interactions (PPIs) based on fluorescence co-localization. Biotechnology Letters, 2020, 42, 2111-2122.	1.1	0
21	Construction and application of an HSP70 promoter-inducible genome editing system in transgenic silkworm to induce resistance to Nosema bombycis. Applied Microbiology and Biotechnology, 2019, 103, 9583-9592.	1.7	14
22	BmAtg13 promotes the replication and proliferation of Bombyx mori nucleopolyhedrovirus. Pesticide Biochemistry and Physiology, 2019, 157, 143-151.	1.6	14
23	Construction of a One-Vector Multiplex CRISPR/Cas9 Editing System to Inhibit Nucleopolyhedrovirus Replication in Silkworms. Virologica Sinica, 2019, 34, 444-453.	1.2	15
24	<i>BmGeminin2</i> interacts with <i>BmRRS1</i> and regulates <i>Bombyx mori</i> cell proliferation. Cell Cycle, 2019, 18, 1498-1512.	1.3	4
25	Comparison of the Hepatoprotective Effects of the Three Main Stilbenes from Mulberry Twigs. Journal of Agricultural and Food Chemistry, 2019, 67, 5521-5529.	2.4	17
26	Resistant silkworm strain block viral infection independent of melanization. Pesticide Biochemistry and Physiology, 2019, 154, 88-96.	1.6	7
27	Oxyresveratrol prevents lipopolysaccharide/d-galactosamine-induced acute liver injury in mice. International Immunopharmacology, 2018, 56, 105-112.	1.7	37
28	Construction and characterization of a synthetic Baculovirus-inducible 39K promoter. Journal of Biological Engineering, 2018, 12, 30.	2.0	4
29	C-lysozyme contributes to antiviral immunity in Bombyx mori against nucleopolyhedrovirus infection. Journal of Insect Physiology, 2018, 108, 54-60.	0.9	32
30	Excision of Nucleopolyhedrovirus Form Transgenic Silkworm Using the CRISPR/Cas9 System. Frontiers in Microbiology, 2018, 9, 209.	1.5	27
31	Bombyx mori Nuclear Polyhedrosis Virus (BmNPV) Induces Host Cell Autophagy to Benefit Infection. Viruses, 2018, 10, 14.	1.5	24
32	Establishment of a baculovirus-inducible CRISPR/Cas9 system for antiviral research in transgenic silkworms. Applied Microbiology and Biotechnology, 2018, 102, 9255-9265.	1.7	20
33	Role of AMPK in the expression of tight junction proteins in heat-treated porcine Sertoli cells. Theriogenology, 2018, 121, 42-52.	0.9	17
34	Transgenic RNAi of BmREEPa in silkworms can enhance the resistance of silkworm to Bombyxmori Nucleopolyhedrovirus. Biochemical and Biophysical Research Communications, 2017, 483, 855-859.	1.0	8
35	Baculovirus LEF-11 Hijack Host ATPase ATAD3A to Promote Virus Multiplication in Bombyx mori cells. Scientific Reports, 2017, 7, 46187.	1.6	18
36	Two <i>Geminin</i> homologs regulate DNA replication in silkworm, <i>Bombyx mori</i> . Cell Cycle, 2017, 16, 830-840.	1.3	7

#	Article	IF	CITATIONS
37	Identification and characterization of the BmCyclin L1-BmCDK11A/B complex in relation to cell cycle regulation. Cell Cycle, 2017, 16, 861-868.	1.3	11
38	BmNHR96 participate BV entry of BmN-SWU1 cells via affecting the cellular cholesterol level. Biochemical and Biophysical Research Communications, 2017, 482, 1484-1490.	1.0	18
39	Oxyresveratrol, a Stilbene Compound from <scp><i>Morus alba</i></scp> L. Twig Extract Active Against <i>Trichophyton rubrum</i> . Phytotherapy Research, 2017, 31, 1842-1848.	2.8	18
40	InÂvivo RNA interference of BmNHR96 enhances the resistance of transgenic silkworm to BmNPV. Biochemical and Biophysical Research Communications, 2017, 493, 332-339.	1.0	9
41	Bombyx mori protein BmREEPa and BmPtchd could form a complex with BmNPV envelope protein GP64. Biochemical and Biophysical Research Communications, 2017, 490, 1254-1259.	1.0	6
42	Baculovirus LEF-11 nuclear localization signal is important for viral DNA replication. Virus Research, 2017, 238, 133-140.	1.1	5
43	Comparative transcriptome profiling of a thermal resistant vs. sensitive silkworm strain in response to high temperature under stressful humidity condition. PLoS ONE, 2017, 12, e0177641.	1.1	15
44	A newly discovered member of the Atlastin family, BmAtlastin-n, has an antiviral effect against BmNPV in Bombyx mori. Scientific Reports, 2016, 6, 28946.	1.6	30
45	BmDredd is an initiator caspase and participates in Emodin-induced apoptosis in the silkworm, Bombyx mori. Gene, 2016, 591, 362-368.	1.0	9
46	Screening and optimization of an efficient Bombyx mori nucleopolyhedrovirus inducible promoter. Journal of Biotechnology, 2016, 231, 72-80.	1.9	10
47	Effects of starvation and hormones on DNA synthesis in silk gland cells of the silkworm, <i>Bombyx mori</i> . Insect Science, 2016, 23, 569-578.	1.5	17
48	Establishment of a highly efficient virus-inducible CRISPR/Cas9 system in insect cells. Antiviral Research, 2016, 130, 50-57.	1.9	55
49	Effects of 10-hydroxycamptothecin on intrinsic mitochondrial pathway in silkworm BmN-SWU1 cells. Pesticide Biochemistry and Physiology, 2016, 127, 15-20.	1.6	13
50	Mitochondrial Apoptotic Pathway Is Activated by H2O2-Mediated Oxidative Stress in BmN-SWU1 Cells from Bombyx mori Ovary. PLoS ONE, 2015, 10, e0134694.	1.1	24
51	Oligomerization of Baculovirus LEF-11 Is Involved in Viral DNA Replication. PLoS ONE, 2015, 10, e0144930.	1.1	22
52	DNA Synthesis during Endomitosis Is Stimulated by Insulin via the PI3K/Akt and TOR Signaling Pathways in the Silk Gland Cells of Bombyx mori. International Journal of Molecular Sciences, 2015, 16, 6266-6280.	1.8	12
53	Expression pattern and tissue localization of the class B scavenger receptor <i>BmSCRBQ4</i> in <i>Bombyx mori</i> . Insect Science, 2015, 22, 739-747.	1.5	3
54	BmREEPa Is a Novel Gene that Facilitates BmNPV Entry into Silkworm Cells. PLoS ONE, 2015, 10, e0144575.	1.1	26

#	Article	IF	CITATIONS
55	Combined Effect of Cameo2 and CBP on the Cellular Uptake of Lutein in the Silkworm, Bombyx mori. PLoS ONE, 2014, 9, e86594.	1.1	16
56	Differential Susceptibilities to BmNPV Infection of Two Cell Lines Derived from the Same Silkworm Ovarian Tissues. PLoS ONE, 2014, 9, e105986.	1.1	17
57	BmICE-2 is a novel pro-apoptotic caspase involved in apoptosis in the silkworm, Bombyx mori. Biochemical and Biophysical Research Communications, 2014, 445, 100-106.	1.0	15
58	Identification of a novel nuclear localization signal of baculovirus late expression factor 11. Virus Research, 2014, 184, 111-119.	1.1	12
59	Inhibition of BmNPV replication in silkworm cells using inducible and regulated artificial microRNA precursors targeting the essential viral gene lef-11. Antiviral Research, 2014, 104, 143-152.	1.9	48
60	Bombyx mori nucleopolyhedrovirus ORF79 is a per os infectivity factor associated with the PIF complex. Virus Research, 2014, 184, 62-70.	1.1	36
61	Role of Bmbuffy in hydroxycamptothecine-induced apoptosis in BmN-SWU1 cells of the silkworm, Bombyx mori. Biochemical and Biophysical Research Communications, 2014, 447, 237-243.	1.0	17
62	BmCyclin B and BmCyclin B3 are required for cell cycle progression in the silkworm, Bombyx mori. Science China Life Sciences, 2013, 56, 360-365.	2.3	7
63	The genomic underpinnings of apoptosis in the silkworm, Bombyx mori. BMC Genomics, 2010, 11, 611.	1.2	72
64	Establishment and characterization of an ovarian cell line of the silkworm, Bombyx mori. Tissue and Cell, 2010, 42, 42-46.	1.0	83
65	Complete Resequencing of 40 Genomes Reveals Domestication Events and Genes in Silkworm () Tj ETQq1 1 0.78	4314 rgB ⁻ 6.0	Г /Qverlock 342
66	Establishment and characterization of two embryonic cell lines of Bombyx mori. In Vitro Cellular and Developmental Biology - Animal, 2007, 43, 101-104.	0.7	43
67	A Draft Sequence for the Genome of the Domesticated Silkworm (Bombyx mori). Science, 2004, 306, 1937-1940.	6.0	994