Jonathan K Ball

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/370259/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Broadly neutralizing antibodies protect against hepatitis C virus quasispecies challenge. Nature Medicine, 2008, 14, 25-27.	30.7	556
2	Monoclonal Antibody AP33 Defines a Broadly Neutralizing Epitope on the Hepatitis C Virus E2 Envelope Glycoprotein. Journal of Virology, 2005, 79, 11095-11104.	3.4	262
3	Characterization of host-range and cell entry properties of the major genotypes and subtypes of hepatitis C virus. Hepatology, 2005, 41, 265-274.	7.3	234
4	Identification of Conserved Residues in the E2 Envelope Glycoprotein of the Hepatitis C Virus That Are Critical for CD81 Binding. Journal of Virology, 2006, 80, 8695-8704.	3.4	232
5	Human Adaptation of Ebola Virus during the West African Outbreak. Cell, 2016, 167, 1079-1087.e5.	28.9	180
6	Characterization of the hepatitis C virus E2 epitope defined by the broadly neutralizing monoclonal antibody AP33. Hepatology, 2006, 43, 592-601.	7.3	150
7	Broadly neutralizing human monoclonal antibodies to the hepatitis C virus E2 glycoprotein. Journal of General Virology, 2008, 89, 653-659.	2.9	144
8	Role of Scavenger Receptor Class B Type I in Hepatitis C Virus Entry: Kinetics and Molecular Determinants. Journal of Virology, 2010, 84, 34-43.	3.4	144
9	Genome-to-genome analysis highlights the effect of the human innate and adaptive immune systems on the hepatitis C virus. Nature Genetics, 2017, 49, 666-673.	21.4	129
10	Human combinatorial libraries yield rare antibodies that broadly neutralize hepatitis C virus. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16269-16274.	7.1	127
11	The past, present and future of neutralizing antibodies for hepatitis C virus. Antiviral Research, 2014, 105, 100-111.	4.1	125
12	Neutralizing Monoclonal Antibodies against Hepatitis C Virus E2 Protein Bind Discontinuous Epitopes and Inhibit Infection at a Postattachment Step. Journal of Virology, 2011, 85, 7005-7019.	3.4	120
13	Identification of a Broadly Cross-Reacting and Neutralizing Human Monoclonal Antibody Directed against the Hepatitis C Virus E2 Protein. Journal of Virology, 2008, 82, 1047-1052.	3.4	119
14	Directex vivo comparison of the breadth and specificity of the T cells in the liver and peripheral blood of patients with chronic HCV infection. European Journal of Immunology, 2001, 31, 2388-2394.	2.9	118
15	Definition of a Conserved Immunodominant Domain on Hepatitis C Virus E2 Glycoprotein by Neutralizing Human Monoclonal Antibodies. Journal of Virology, 2008, 82, 6061-6066.	3.4	112
16	Development of a strand-specific RT-PCR based assay to detect the replicative form of hepatitis C virus RNA. Journal of Virological Methods, 2001, 94, 111-120.	2.1	98
17	Structural Flexibility of a Conserved Antigenic Region in Hepatitis C Virus Glycoprotein E2 Recognized by Broadly Neutralizing Antibodies. Journal of Virology, 2015, 89, 2170-2181.	3.4	96
18	Non-Macrophage-Tropic Human Immunodeficiency Virus Type 1 R5 Envelopes Predominate in Blood, Lymph Nodes, and Semen: Implications for Transmission and Pathogenesis. Journal of Virology, 2006, 80, 6324-6332.	3.4	95

#	Article	IF	CITATIONS
19	Variation in HIV-1 R5 macrophage-tropism correlates with sensitivity to reagents that block envelope: CD4 interactions but not with sensitivity to other entry inhibitors. Retrovirology, 2008, 5, 5.	2.0	71
20	An alpaca nanobody inhibits hepatitis C virus entry and cell-to-cell transmission. Hepatology, 2013, 58, 932-939.	7.3	69
21	Hepatitis C Virus (HCV) Infection May Elicit Neutralizing Antibodies Targeting Epitopes Conserved in All Viral Genotypes. PLoS ONE, 2009, 4, e8254.	2.5	64
22	Identification of New Functional Regions in Hepatitis C Virus Envelope Glycoprotein E2. Journal of Virology, 2011, 85, 1777-1792.	3.4	64
23	A Diverse Panel of Hepatitis C Virus Glycoproteins for Use in Vaccine Research Reveals Extremes of Monoclonal Antibody Neutralization Resistance. Journal of Virology, 2016, 90, 3288-3301.	3.4	62
24	Determination of the human antibody response to the epitope defined by the hepatitis C virus-neutralizing monoclonal antibody AP33. Journal of General Virology, 2007, 88, 2991-3001.	2.9	61
25	The role of neutralizing antibodies in hepatitis C virus infection. Journal of General Virology, 2012, 93, 1-19.	2.9	58
26	Naturally Occurring Antibodies That Recognize Linear Epitopes in the Amino Terminus of the Hepatitis C Virus E2 Protein Confer Noninterfering, Additive Neutralization. Journal of Virology, 2012, 86, 2739-2749.	3.4	54
27	Hepatitis C Virus Vaccine: Challenges and Prospects. Vaccines, 2020, 8, 90.	4.4	53
28	Students' Views towards Sars-Cov-2 Mass Asymptomatic Testing, Social Distancing and Self-Isolation in a University Setting during the COVID-19 Pandemic: A Qualitative Study. International Journal of Environmental Research and Public Health, 2021, 18, 4182.	2.6	53
29	Specific interaction of hepatitis C virus glycoproteins with mannan binding lectin inhibits virus entry. Protein and Cell, 2010, 1, 664-674.	11.0	52
30	Hepatitis C Patient-Derived Glycoproteins Exhibit Marked Differences in Susceptibility to Serum Neutralizing Antibodies: Genetic Subtype Defines Antigenic but Not Neutralization Serotype. Journal of Virology, 2011, 85, 4246-4257.	3.4	51
31	Antigenicity and Immunogenicity of Differentially Glycosylated Hepatitis C Virus E2 Envelope Proteins Expressed in Mammalian and Insect Cells. Journal of Virology, 2019, 93, .	3.4	51
32	Intercompartmental Recombination of HIV-1 Contributes to <i>env</i> Intrahost Diversity and Modulates Viral Tropism and Sensitivity to Entry Inhibitors. Journal of Virology, 2011, 85, 6024-6037.	3.4	50
33	Evolutionary trends of the first hypervariable region of the hepatitis C virus E2 protein in individuals with differing liver disease severity. Journal of General Virology, 2002, 83, 11-23.	2.9	49
34	A Conserved Determinant in the V1 Loop of HIV-1 Modulates the V3 Loop To Prime Low CD4 Use and Macrophage Infection. Journal of Virology, 2011, 85, 2397-2405.	3.4	49
35	All Surfaces Are Not Equal in Contact Transmission of SARS-CoV-2. Matter, 2020, 3, 1433-1441.	10.0	49
36	Discovery of Novel Alphacoronaviruses in European Rodents and Shrews. Viruses, 2016, 8, 84.	3.3	45

Jonathan K Ball

#	Article	IF	CITATIONS
37	The Role of Humoral Innate Immunity in Hepatitis C Virus Infection. Viruses, 2012, 4, 1-27.	3.3	43
38	Immunogenicity of a new gorilla adenovirus vaccine candidate for COVID-19. Molecular Therapy, 2021, 29, 2412-2423.	8.2	41
39	Two doses of the SARS-CoV-2 BNT162b2 vaccine enhance antibody responses to variants in individuals with prior SARS-CoV-2 infection. Science Translational Medicine, 2021, 13, eabj0847.	12.4	40
40	Severe fibrosis in hepatitis C virus-infected patients is associated with increased activity of the mannan-binding lectin (MBL)/MBL-associated serine protease 1 (MASP-1) complex. Clinical and Experimental Immunology, 2006, 147, 061127015327009-???.	2.6	38
41	B-cell receptors expressed by lymphomas of hepatitis C virus (HCV)–infected patients rarely react with the viral proteins. Blood, 2014, 123, 1512-1515.	1.4	37
42	Evolutionary dynamics of hepatitis C virus envelope genes during chronic infection. Journal of General Virology, 2005, 86, 1931-1942.	2.9	36
43	An ancestral host defence peptide within human β-defensin 3 recapitulates the antibacterial and antiviral activity of the full-length molecule. Scientific Reports, 2016, 5, 18450.	3.3	35
44	Shared Common Ancestry of Rodent Alphacoronaviruses Sampled Globally. Viruses, 2019, 11, 125.	3.3	35
45	Novel functional hepatitis C virus glycoprotein isolates identified using an optimized viral pseudotype entry assay. Journal of General Virology, 2016, 97, 2265-2279.	2.9	33
46	Hepatitis C Virus Envelope Glycoprotein Fitness Defines Virus Population Composition following Transmission to a New Host. Journal of Virology, 2012, 86, 11956-11966.	3.4	31
47	Dendritic cells cultured from mononuclear cells and CD34 cells in myeloma do not harbour human herpesvirus 8. British Journal of Haematology, 1998, 100, 793-796.	2.5	28
48	Analysis of the binding of hepatitis C virus genotype 1a and 1b E2 glycoproteins to peripheral blood mononuclear cell subsets. Journal of General Virology, 2005, 86, 2507-2512.	2.9	28
49	Recombinant Human L-Ficolin Directly Neutralizes Hepatitis C Virus Entry. Journal of Innate Immunity, 2014, 6, 676-684.	3.8	28
50	HIV-1 in semen: Determination of proviral and viral titres compared to blood, and quantification of semen leukocyte populations. , 1999, 59, 356-363.		27
51	Cross-genotype AR3-specific neutralizing antibodies confer long-term protection in injecting drug users after HCV clearance. Journal of Hepatology, 2019, 71, 14-24.	3.7	27
52	Cross-genotype characterization of genetic diversity and molecular adaptation in hepatitis C virus envelope glycoprotein genes. Journal of General Virology, 2007, 88, 458-469.	2.9	25
53	Cloning, Expression, and Functional Analysis of Patient-Derived Hepatitis C Virus Glycoproteins. Methods in Molecular Biology, 2007, 379, 177-197.	0.9	25
54	The Impact of Real-Time Whole-Genome Sequencing in Controlling Healthcare-Associated SARS-CoV-2 Outbreaks. Journal of Infectious Diseases, 2022, 225, 10-18.	4.0	25

#	Article	IF	CITATIONS
55	Concordance between semen-derived HIV-1 proviral DNA and viral RNA hypervariable region 3 (V3) envelope sequences in cases where semen populations are distinct from those present in blood. Journal of Medical Virology, 2002, 67, 9-19.	5.0	24
56	Variation in the biological properties of HIV-1 R5 envelopes: implications of envelope structure, transmission and pathogenesis. Future Virology, 2010, 5, 435-451.	1.8	24
57	Long-lasting viability of HIV after patient's death. Lancet, The, 1991, 338, 63.	13.7	22
58	Targeting a host-cell entry factor barricades antiviral-resistant HCV variants from on-therapy breakthrough in human-liver mice. Gut, 2016, 65, 2029-2034.	12.1	21
59	Interferonâ€Induced Transmembrane Proteins Mediate Viral Evasion in Acute and Chronic Hepatitis C Virus Infection. Hepatology, 2019, 70, 1506-1520.	7.3	21
60	Adjuvant formulated virus-like particles expressing native-like forms of the Lassa virus envelope surface glycoprotein are immunogenic and induce antibodies with broadly neutralizing activity. Npj Vaccines, 2020, 5, 71.	6.0	21
61	Semen characteristics in HIV-1 positive men and the effect of semen washing Sexually Transmitted Infections, 1997, 73, 303-305.	1.9	20
62	An Antigenically Diverse, Representative Panel of Envelope Glycoproteins for Hepatitis C Virus Vaccine Development. Gastroenterology, 2022, 162, 562-574.	1.3	20
63	HIV coreceptor and chemokine ligand gene expression in the male urethra and female cervix. Aids, 2005, 19, 1257-1265.	2.2	19
64	A novel neutralizing human monoclonal antibody broadly abrogates hepatitis C virus infection in vitro and in vivo. Antiviral Research, 2017, 148, 53-64.	4.1	18
65	A next generation vaccine against human rabies based on a single dose of a chimpanzee adenovirus vector serotype C. PLoS Neglected Tropical Diseases, 2020, 14, e0008459.	3.0	18
66	Dramatic Potentiation of the Antiviral Activity of HIV Antibodies by Cholesterol Conjugation. Journal of Biological Chemistry, 2014, 289, 35015-35028.	3.4	17
67	Structure-Based Design of Hepatitis C Virus E2 Glycoprotein Improves Serum Binding and Cross-Neutralization. Journal of Virology, 2020, 94, .	3.4	17
68	Standardized Method for the Study of Antibody Neutralization of HCV Pseudoparticles (HCVpp). Methods in Molecular Biology, 2019, 1911, 441-450.	0.9	17
69	Novel human anti-claudin 1 mAbs inhibit hepatitis C virus infection and may synergize with anti-SRB1 mAb. Journal of General Virology, 2016, 97, 82-94.	2.9	16
70	Detection of HIV-1 by digoxigenin-labelled PCR and microtitre plate solution hybridisation assay and prevention of PCR carry-over by uracil-N-glycosylase. Journal of Virological Methods, 1993, 44, 67-76.	2.1	14
71	Incorporation of single-stranded DNA binding protein early in polymerase chain reaction product sequencing reactions prevents enzyme pausing. Analytical Biochemistry, 1992, 207, 349-351.	2.4	13
72	Characterisation of a series of human immunodeficiency virus isolates derived sequentially from a single patient. Journal of Medical Virology, 1991, 34, 104-113.	5.0	12

Jonathan K Ball

#	Article	IF	CITATIONS
73	Development of a high-throughput pyrosequencing assay for monitoring temporal evolution and resistance associated variant emergence in the Hepatitis C virus protease coding-region. Antiviral Research, 2014, 110, 52-59.	4.1	12
74	A modified alkaline phosphatase enzyme amplification system and its application in an HIV antigen ELISA. Journal of Virological Methods, 1992, 37, 149-153.	2.1	11
75	GBV-C/HGV coinfection in HIV-1-positive men: Frequent detection of viral RNA in blood plasma but absence from seminal fluid plasma. , 1998, 56, 321-326.		11
76	A polymerase chain reaction method for the amplification of full-length envelope genes of HIV-1 from DNA samples containing single molecules of HIV-1 provirus. Journal of Virological Methods, 2000, 88, 73-80.	2.1	11
77	Flexible and rapid construction of viral chimeras applied to hepatitis C virus. Journal of General Virology, 2016, 97, 2187-2193.	2.9	11
78	Retrospective screening of routine respiratory samples revealed undetected community transmission and missed intervention opportunities for SARS-CoV-2 in the United Kingdom. Journal of General Virology, 2021, 102, .	2.9	10
79	Elevated serum activity of MBL and ficolin-2 as biomarkers for progression to hepatocellular carcinoma in chronic HCV infection. Virology, 2019, 530, 99-106.	2.4	9
80	Discovery and Prevalence of Divergent RNA Viruses in European Field Voles and Rabbits. Viruses, 2020, 12, 47.	3.3	9
81	Production of Single-Stranded DNA Using a Uracil-N-glycosylase-Mediated Asymmetric Polymerase Chain Reaction Method. Analytical Biochemistry, 1997, 253, 264-267.	2.4	8
82	Poor reduction of HIV-1 RNA titres in nucleoside reverse transcriptase inhibitor experienced patients treated with indinavir combination therapy. Sexually Transmitted Infections, 1999, 75, 337-339.	1.9	8
83	Non-ionic detergents facilitate non-specific binding of M13 bacteriophage to polystyrene surfaces. Journal of Virological Methods, 2015, 221, 1-8.	2.1	8
84	Broad neutralization of hepatitis C virusâ€resistant variants by Civacir hepatitis C immunoglobulin. Hepatology, 2016, 64, 1495-1506.	7.3	8
85	Development and characterization of a human monoclonal antibody targeting the N-terminal region of hepatitis C virus envelope glycoprotein E1. Virology, 2018, 514, 30-41.	2.4	8
86	lmmunization with a synthetic consensus hepatitis C virus E2 glycoprotein ectodomain elicits virus-neutralizing antibodies. Antiviral Research, 2018, 160, 25-37.	4.1	8
87	Real-World Outcomes of Direct-Acting Antiviral Treatment and Retreatment in United Kingdom–Based Patients Infected With Hepatitis C Virus Genotypes/Subtypes Endemic in Africa. Journal of Infectious Diseases, 2022, 226, 995-1004.	4.0	8
88	The use of uracil-N-glycosylase in the preparation of PCR products of direct sequencing. Nucleic Acids Research, 1992, 20, 3255-3255.	14.5	7
89	A bivalent HCV peptide vaccine elicits pan-genotypic neutralizing antibodies in mice. Vaccine, 2020, 38, 6864-6867.	3.8	7
90	Trichodysplasia Spinulosa Polyomavirus in Respiratory Tract of Immunocompromised Child. Emerging Infectious Diseases, 2018, 24, 1744-1746.	4.3	6

#	Article	IF	CITATIONS
91	OUP accepted manuscript. Journal of Infectious Diseases, 2022, , .	4.0	6
92	Association of antibodies to hepatitis C virus glycoproteins 1 and 2 (anti-E1E2) with HCV disease. Journal of Viral Hepatitis, 2008, 15, 339-345.	2.0	5
93	A case of hepatitis C virus transmission acquired through sharing a haemodialysis machine. CKJ: Clinical Kidney Journal, 2011, 4, 32-35.	2.9	5
94	HIV-1 co-receptor expression and epithelial immune cells of the cervix in asymptomatic women attending a genitourinary medicine clinic. HIV Medicine, 2013, 14, 108-114.	2.2	5
95	Cholesterol conjugation potentiates the antiviral activity of an HIV immunoadhesin. Journal of Peptide Science, 2015, 21, 743-749.	1.4	5
96	Polymer microarrays rapidly identify competitive adsorbents of virus-like particles. Biointerphases, 2020, 15, 061005.	1.6	5
97	Challenges on the development of a pseudotyping assay for Zika glycoproteins. Journal of Medical Microbiology, 2021, 70, .	1.8	5
98	Retrieval of the Complete Coding Sequence of the UK-Endemic Tatenale Orthohantavirus Reveals Extensive Strain Variation and Supports Its Classification as a Novel Species. Viruses, 2020, 12, 454.	3.3	4
99	Expression of human ficolin-2 in hepatocytes confers resistance to infection by diverse hepatotropic viruses. Journal of Medical Microbiology, 2019, 68, 642-648.	1.8	4
100	SARS-CoV-2 proteins (version 2020.2) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2020, 2020, .	0.2	4
101	Discovery of Novel Coronaviruses in Rodents. Methods in Molecular Biology, 2020, 2203, 33-40.	0.9	4
102	Hepatitis C virus quasispecies and pseudotype analysis from acute infection to chronicity in HIV-1 co-infected individuals. Virology, 2016, 492, 213-224.	2.4	3
103	Identification of Infectious Agents in High-Throughput Sequencing Data Sets Is Easily Achievable Using Free, Cloud-Based Bioinformatics Platforms. Journal of Clinical Microbiology, 2019, 57, .	3.9	3
104	Role of HVR1 sequence similarity in the cross-genotypic neutralization of HCV. Virology Journal, 2020, 17, 140.	3.4	3
105	Cloning and Analysis of Authentic Patient-Derived HCV E1/E2 Glycoproteins. Methods in Molecular Biology, 2019, 1911, 275-294.	0.9	3
106	Simultaneous determination of HCV genotype and NS5B resistance associated substitutions using dried serum spots from São Paulo state, Brazil. Access Microbiology, 2022, 4, .	0.5	3
107	Human parainfluenza 2 & 4: Clinical and genetic epidemiology in the UK, 2013–2017, reveals distinct disease features and coâ€circulating genomic subtypes. Influenza and Other Respiratory Viruses, 2022, 16, 1122-1132.	3.4	3
108	Analysis of Serine Codon Conservation Reveals Diverse Phenotypic Constraints on Hepatitis C Virus Glycoprotein Evolution. Journal of Virology, 2014, 88, 667-678.	3.4	2

#	Article	IF	CITATIONS
109	Use of short tandem repeat fingerprinting to validate sample origins in hepatitis C virus molecular epidemiology studies. Journal of General Virology, 2014, 95, 66-70.	2.9	2
110	Enterovirus D68 epidemic, UK, 2018, was caused by subclades B3 and D1, predominantly in children and adults, respectively, with both subclades exhibiting extensive genetic diversity. Microbial Genomics, 2022, 8, .	2.0	2
111	Tagged polymerase chain reaction subtractive hybridization for the enrichment of phage display random peptide libraries. Analytical Biochemistry, 2005, 339, 61-68.	2.4	1
112	InFusion Cloning for the Generation of Biologically Relevant HCV Chimeric Molecular Clones. Methods in Molecular Biology, 2019, 1911, 93-104.	0.9	1
113	Coronavirus (CoV) proteins (version 2020.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2020, 2020, .	0.2	1
114	The HCV Envelope Glycoprotein Down-Modulates NF-κB Signalling and Associates With Stimulation of the Host Endoplasmic Reticulum Stress Pathway. Frontiers in Immunology, 2022, 13, 831695.	4.8	1
115	Coronavirus (CoV) proteins in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	0
116	Discovery of novel highly divergent RNA viruses in European rodents and rabbits. Access Microbiology, 2019, 1, .	0.5	0
117	Coronavirus (CoV) proteins in GtoPdb v.2022.2. IUPHAR/BPS Guide To Pharmacology CITE, 2022, 2022, .	0.2	0