
Jeongsik Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3702507/publications.pdf Version: 2024-02-01

LEONCSIK KIM

#	Article	IF	CITATIONS
1	Trifurcate Feed-Forward Regulation of Age-Dependent Cell Death Involving <i>miR164</i> in <i>Arabidopsis</i> . Science, 2009, 323, 1053-1057.	12.6	652
2	ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature, 2007, 449, 356-360.	27.8	510
3	Transcriptional corepressor TOPLESS complexes with pseudoresponse regulator proteins and histone deacetylases to regulate circadian transcription. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 761-766.	7.1	232
4	TowardÂSystems Understanding of Leaf Senescence: An Integrated Multi-Omics Perspective on Leaf Senescence Research. Molecular Plant, 2016, 9, 813-825.	8.3	153
5	The RAV1 transcription factor positively regulates leaf senescence in Arabidopsis. Journal of Experimental Botany, 2010, 61, 3947-3957.	4.8	152
6	New insights into the regulation of leaf senescence in Arabidopsis. Journal of Experimental Botany, 2018, 69, 787-799.	4.8	141
7	Programming of Plant Leaf Senescence with Temporal and Inter-Organellar Coordination of Transcriptome in Arabidopsis1 Â. Plant Physiology, 2016, 171, 452-467.	4.8	121
8	The Arabidopsis COG1 gene encodes a Dof domain transcription factor and negatively regulates phytochrome signaling. Plant Journal, 2003, 34, 161-171.	5.7	113
9	GIGANTEA is a co-chaperone which facilitates maturation of ZEITLUPE in the Arabidopsis circadian clock. Nature Communications, 2017, 8, 3.	12.8	111
10	Time-evolving genetic networks reveal a NAC troika that negatively regulates leaf senescence in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4930-E4939.	7.1	106
11	Rapid Assessment of Gene Function in the Circadian Clock Using Artificial MicroRNA in Arabidopsis Mesophyll Protoplasts Â. Plant Physiology, 2010, 154, 611-621.	4.8	91
12	ELF4 Regulates GIGANTEA Chromatin Access through Subnuclear Sequestration. Cell Reports, 2013, 3, 671-677.	6.4	80
13	HSP90 functions in the circadian clock through stabilization of the client F-box protein ZEITLUPE. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16843-16848.	7.1	79
14	The F-box protein ZEITLUPE controls stability and nucleocytoplasmic partitioning of GIGANTEA. Development (Cambridge), 2013, 140, 4060-4069.	2.5	74
15	FIONA1 Is Essential for Regulating Period Length in the <i>Arabidopsis</i> Circadian Clock. Plant Cell, 2008, 20, 307-319.	6.6	73
16	<i>Arabidopsis</i> ABCG34 contributes to defense against necrotrophic pathogens by mediating the secretion of camalexin. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5712-E5720.	7.1	71
17	Arabidopsis VIM Proteins Regulate Epigenetic Silencing by Modulating DNA Methylation and Histone Modification in Cooperation with MET1. Molecular Plant, 2014, 7, 1470-1485.	8.3	56
18	Brassinosteroid Biosynthesis Is Modulated via a Transcription Factor Cascade of COG1, PIF4, and PIF5. Plant Physiology, 2017, 174, 1260-1273.	4.8	55

Jeongsik Kim

#	Article	IF	CITATIONS
19	ORESARA15, a PLATZ transcription factor, mediates leaf growth and senescence in <i>Arabidopsis</i> . New Phytologist, 2018, 220, 609-623.	7.3	55
20	A GUS/Luciferase Fusion Reporter for Plant Gene Trapping and for Assay of Promoter Activity with Luciferin-Dependent Control of the Reporter Protein Stability. Plant and Cell Physiology, 2007, 48, 1121-1131.	3.1	44
21	Comparative transcriptome analysis in Arabidopsis ein2/ore3 and ahk3/ore12 mutants during dark-induced leaf senescence. Journal of Experimental Botany, 2018, 69, 3023-3036.	4.8	31
22	Sugar metabolism as input signals and fuel for leaf senescence. Genes and Genomics, 2019, 41, 737-746.	1.4	29
23	ATM suppresses leaf senescence triggered by DNA doubleâ€strand break through epigenetic control of senescenceâ€associated genes in <i>Arabidopsis</i> . New Phytologist, 2020, 227, 473-484.	7.3	28
24	A missense allele of KARRIKIN-INSENSITIVE2 impairs ligand-binding and downstream signaling in Arabidopsis thaliana. Journal of Experimental Botany, 2018, 69, 3609-3623.	4.8	26
25	Natural allelic variation of <i><scp>GVS</scp>1</i> confers diversity in the regulation of leaf senescence in <i>Arabidopsis</i> . New Phytologist, 2019, 221, 2320-2334.	7.3	23
26	<scp>NORE1</scp> / <scp>SAUL1</scp> integrates temperatureâ€dependent defense programs involving <scp>SGT1b</scp> and <scp>PAD4</scp> pathways and leaf senescence in <i>Arabidopsis</i> . Physiologia Plantarum, 2016, 158, 180-199.	5.2	19
27	A novel basic helix-loop-helix transcription factor, ZjICE2 from Zoysia japonica confers abiotic stress tolerance to transgenic plants via activating the DREB/CBF regulon and enhancing ROS scavenging. Plant Molecular Biology, 2020, 102, 447-462.	3.9	19
28	High-Throughput and Computational Study of Leaf Senescence through a Phenomic Approach. Frontiers in Plant Science, 2017, 8, 250.	3.6	15
29	Ethylene responsive factor34 mediates stressâ€induced leaf senescence by regulating salt stressâ€responsive genes. Plant, Cell and Environment, 2022, 45, 1719-1733.	5.7	12
30	Instrumentation and Software for Analysis of Arabidopsis Circadian Leaf Movement. Interdisciplinary Bio Central, 2009, 1, 22-25.	0.1	3
31	An HSP90 co-chaperone controls circadian proteostasis. Cell Cycle, 2017, 16, 1483-1484.	2.6	3
32	Transient gene expression system in zoysiagrass leaf mesophyll protoplasts. Plant Biotechnology Reports, 2022, 16, 113-121.	1.5	2
33	Rapid Investigation of Functional Roles of Genes in Regulation of Leaf Senescence Using Arabidopsis Protoplasts. Frontiers in Plant Science, 2022, 13, 818239.	3.6	2
34	New Genotypes and Diversity of Orientia tsutsugamushi DNA samples from Patients with Scrub Typhus in South Korea as Determined by Multilocus Sequence Typing. American Journal of Tropical Medicine and Hygiene, 2022, , .	1.4	0