
Vahid Haddadi-asl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3702049/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular dynamics simulation, synthesis and characterization of polyurethane block polymers containing PTHF/PCL mixture as a soft segment. Polymer Bulletin, 2022, 79, 643-661.	3.3	7
2	Effect of chain extender length and molecular architecture on phase separation and rheological properties of ether-based polyurethanes. Polymer Bulletin, 2022, 79, 8653-8668.	3.3	8
3	Preparation of intelligent magnetic halloysite nanotubes/polyurethane nanocomposites: The role of nanotube modification on the shape recovery rate. Materials Research Bulletin, 2022, 147, 111653.	5.2	11
4	A review on microphase separation measurement techniques for polyurethanes. Journal of Plastic Film and Sheeting, 2022, 38, 502-541.	2.2	13
5	Synthesis of pH-Sensitive polydopamine capsules via pickering emulsions stabilized by cellulose nanocrystals to study drug release behavior. Polymer, 2022, 255, 125111.	3.8	4
6	Preparation of polyurethane composites reinforced with halloysite and carbon nanotubes. Polymer Composites, 2021, 42, 450-461.	4.6	27
7	Effect of porogenic solvent in synthesis of mesoporous and microporous molecularly imprinted polymer based on magnetic halloysite nanotubes. Materials Today Communications, 2021, 26, 101780.	1.9	5
8	Magnetic halloysiteâ€ <scp>based molecularly</scp> imprinted polymer for specific recognition of sunset yellow in dyes mixture. Polymers for Advanced Technologies, 2021, 32, 803-814.	3.2	15
9	Efficient Photocatalytic Degradation of Gaseous Benzene and Toluene over Novel Hybrid PIL@TiO2/m-GO Composites. Catalysts, 2021, 11, 126.	3.5	11
10	Robust antimicrobial photodynamic therapy with curcumin-poly (lactic-co-glycolic acid) nanoparticles against COVID-19: A preliminary in vitro study in Vero cell line as a model. Photodiagnosis and Photodynamic Therapy, 2021, 34, 102286.	2.6	31
11	Step-by-step design of poly (ε-caprolactone) /chitosan/Melilotus officinalis extract electrospun nanofibers for wound dressing applications. International Journal of Biological Macromolecules, 2021, 180, 36-50.	7.5	30
12	Nitrogen and phosphorous doped graphene quantum dots: Excellent flame retardants and smoke suppressants for polyacrylonitrile nanocomposites. Journal of Hazardous Materials, 2020, 381, 121013.	12.4	75
13	Synthesis of magnetic nanoparticles-decorated halloysite nanotubes/poly([2-(acryloyloxy)ethyl]trimethylammonium chloride) hybrid nanoparticles for removal of Sunset Yellow from water. Journal of Polymer Research, 2020, 27, 1.	2.4	21
14	Halloysiteâ€reinforced thermoplastic polyurethane nanocomposites: Physicoâ€mechanical, rheological, and thermal investigations. Polymer Composites, 2020, 41, 3260-3270.	4.6	23
15	An innovative and eco-friendly modality for synthesis of highly fluorinated graphene by an acidic ionic liquid: Making of an efficacious vehicle for anti-cancer drug delivery. Applied Surface Science, 2020, 515, 146071.	6.1	35
16	Switch segment and halloysite nanotube role in the phase separation behavior of shapeâ€memory thermoplastic polyurethane. Polymer Composites, 2020, 41, 2625-2633.	4.6	17
17	Shear bond strength, adhesive remnant index, and anti-biofilm effects of a photoexcited modified orthodontic adhesive containing curcumin doped poly lactic-co-glycolic acid nanoparticles: An ex-vivo biofilm model of S. mutans on the enamel slab bonded brackets. Photodiagnosis and Photodynamic Therapy, 2020, 30, 101674.	2.6	30
18	Sericin grafted multifunctional curcumin loaded fluorinated graphene oxide nanomedicines with charge switching properties for effective cancer cell targeting. International Journal of Pharmaceutics, 2019, 572, 118791.	5.2	28

#	Article	IF	CITATIONS
19	Rheological investigation of carbon-based hybrid polyurethane nanocomposites with continuous networks. Iranian Polymer Journal (English Edition), 2019, 28, 801-811.	2.4	4
20	Synthesis of novel functionalized graphene oxide with incorporation pyrimidine group including cobalt-iodine bonds their nanocomposites with p-type conductive polymer as excellent pseudocapacitor electrode materials. Journal of Materials Science: Materials in Electronics, 2019, 30, 18439-18451.	2.2	9
21	Surfactantâ€assistedâ€waterâ€exposed versus surfactantâ€aqueousâ€solutionâ€exposed electrospinning of novel super hydrophilic Polycaprolactoneâ€based fibers: Cell culture studies. Journal of Biomedical Materials Research - Part A, 2019, 107, 1204-1212.	4.0	2
22	Stimuli-responsive DOX release behavior of cross-linked poly(acrylic acid) nanoparticles. E-Polymers, 2019, 19, 203-214.	3.0	27
23	How the soft segment arrangement influences the microphase separation kinetics and mechanical properties of polyurethane block polymers. Materials Research Express, 2019, 6, 085311.	1.6	13
24	A simple and versatile method to tailor physicochemical properties of thermoplastic polyurethane elastomers by using novel mixed soft segments. Materials Research Express, 2019, 6, 065314.	1.6	15
25	Microâ€phase separation kinetics of polyurethane nanocomposites with neural network. Polymer Composites, 2019, 40, 3904-3913.	4.6	13
26	A novel investigation on micro-phase separation of thermoplastic polyurethanes: simulation, theoretical, and experimental approaches. Iranian Polymer Journal (English Edition), 2019, 28, 237-250.	2.4	31
27	Role of sequence of feeding on the properties of polyurethane nanocomposite containing halloysite nanotubes. Designed Monomers and Polymers, 2019, 22, 199-212.	1.6	8
28	Surfactantâ€assistedâ€waterâ€exposed versus surfactantâ€aqueousâ€solutionâ€exposed electrospinning of novel super hydrophilic polycaprolactone based fibers: Analysis of drug release behavior. Journal of Biomedical Materials Research - Part A, 2019, 107, 597-609.	4.0	9
29	Effect of nanofiller content and confined crystallization on the microphase separation kinetics of polyurethane nanocomposites. Polymer Composites, 2019, 40, E422.	4.6	29
30	Synthesis of pHâ€responsive magnetic yolk–shell nanoparticles: A comparison between conventional etching and new deswelling approaches. Applied Organometallic Chemistry, 2018, 32, e4272.	3.5	23
31	Synthesis of dual temperature – and pH-responsive yolk-shell nanoparticles by conventional etching and new deswelling approaches: DOX release behavior. Colloids and Surfaces B: Biointerfaces, 2018, 165, 1-8.	5.0	49
32	Fabrication and characterization of polymer eramic nanocomposites containing drug loaded modified halloysite nanotubes. Journal of Biomedical Materials Research - Part A, 2018, 106, 1276-1287.	4.0	18
33	Preparation of hydrophilic blood compatible polypropylene/pluronics F127 films. Journal of Biomedical Materials Research - Part A, 2018, 106, 652-662.	4.0	4
34	N,N'â€methylenebis(acrylamide)â€crosslinked poly(acrylic acid) particles as doxorubicin carriers: A comparison between release behavior of physically loaded drug and conjugated drug via acidâ€labile hydrazone linkage. Journal of Biomedical Materials Research - Part A, 2018, 106, 342-348.	4.0	51
35	Synthesis of dual thermo―and pHâ€sensitive poly(<i>N</i> â€isopropylacrylamideâ€ <i>co</i> â€acrylic) Tj ET polymerization. Journal of Biomedical Materials Research - Part A, 2018, 106, 231-243.	Qq1 1 0.784 4.0	1314 rgBT /O∖ 42
36	Development and characterization of electrosprayed nanoparticles for encapsulation of <scp>C</scp> urcumin. Journal of Biomedical Materials Research - Part A, 2018, 106, 285-292.	4.0	28

#	Article	IF	CITATIONS
37	Formulation of microâ€phase separation kinetics of polyurethane nanocomposites. Polymers for Advanced Technologies, 2018, 29, 2909-2916.	3.2	16
38	Grafting of pH-sensitive poly (N,N-dimethylaminoethyl methacrylate-co-2-hydroxyethyl methacrylate) onto HNTS <i>via</i> surface-initiated atom transfer radical polymerization for controllable drug release. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 123-131.	3.4	65
39	Surfactant-assisted water exposed electrospinning of novel super hydrophilic polycaprolactone based fibers. Artificial Cells, Nanomedicine and Biotechnology, 2017, 45, 871-880.	2.8	9
40	Fabrication and characterization of hydrophilic poly(ε aprolactone)/pluronic P123 electrospun fibers. Journal of Applied Polymer Science, 2016, 133, .	2.6	45
41	Fabrication and characterization of polymer–ceramic nanocomposites containing pluronic F127 immobilized on hydroxyapatite nanoparticles. RSC Advances, 2016, 6, 80564-80575.	3.6	24
42	Facile fabrication of novel polycaprolactone-based electrospun fibers using in-process water exposure. International Journal of Polymer Analysis and Characterization, 2016, 21, 636-646.	1.9	8
43	Nanofibers of poly (hydroxyethyl methacrylate)-grafted halloysite nanotubes and polycaprolactone by combination of RAFT polymerization and electrospinning. Journal of Polymer Research, 2015, 22, 1.	2.4	22
44	Carboxylic acid functionalization of halloysite nanotubes for sustained release of diphenhydramine hydrochloride. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	33
45	Kinetic study of styrene atom transfer radical polymerization from hydroxyl groups of graphene nanoplatelets: Heterogeneities in chains and graft densities. Polymer Engineering and Science, 2015, 55, 1720-1732.	3.1	40
46	Synthesis of pH-sensitive poly (N,N-dimethylaminoethyl methacrylate)-grafted halloysite nanotubes for adsorption and controlled release of DPH and DS drugs. Polymer, 2015, 65, 143-153.	3.8	107
47	Confinement effect of graphene nanoplatelets on atom transfer radical polymerization of styrene: grafting through hydroxyl groups. Iranian Polymer Journal (English Edition), 2015, 24, 51-62.	2.4	40
48	Grafting poly (methyl methacrylate) from azo-functionalized graphene nanolayers via reverse atom transfer radical polymerization. Colloid and Polymer Science, 2015, 293, 735-750.	2.1	45
49	INTRODUCTION OF A DOUBLE BOND CONTAINING MODIFIER ON THE SURFACE OF MCM-41 NANOPARTICLES: APPLICATION FOR SR&NI ATRP OF STYRENE. Nano, 2014, 09, 1450023.	1.0	9
50	Furfuryl alcohol functionalized graphene nanosheets for synthesis of high carbon yield novolak composites. Journal of Applied Polymer Science, 2014, 131, .	2.6	40
51	A kinetics study on the <i>in situ</i> reversible addition–fragmentation chain transfer and free radical polymerization of styrene in presence of silica aerogel nanoporous particles. Designed Monomers and Polymers, 2014, 17, 245-254.	1.6	22
52	In situ atom transfer radical polymerization of styrene to in-plane functionalize graphene nanolayers: grafting through hydroxyl groups. Journal of Polymer Research, 2014, 21, 1.	2.4	50
53	Ion-Exchange Polymer Nanofibers for Enhanced Osteogenic Differentiation of Stem Cells and Ectopic Bone Formation. ACS Applied Materials & Interfaces, 2014, 6, 72-82.	8.0	30
54	In-plane functionalizing graphene nanolayers with polystyrene by atom transfer radical polymerization: Grafting from hydroxyl groups. Polymer Composites, 2014, 35, 386-395.	4.6	45

#	Article	IF	CITATIONS
55	Reverse atom transfer radical polymerization of methyl methacrylate in the presence of Azo-functionalized carbon nanotubes: a grafting from approach. Colloid and Polymer Science, 2014, 292, 2971-2981.	2.1	62
56	Polystyrene-grafted graphene nanoplatelets with various graft densities by atom transfer radical polymerization from the edge carboxyl groups. RSC Advances, 2014, 4, 24439-24452.	3.6	66
57	Nanocrystalline cellulose grafted random copolymers of N-isopropylacrylamide and acrylic acid synthesized by RAFT polymerization: effect of different acrylic acid contents on LCST behavior. RSC Advances, 2014, 4, 31428-31442.	3.6	112
58	Edgeâ€functionalized graphene nanoplatelets with polystyrene by atom transfer radical polymerization: grafting through carboxyl groups. Polymer International, 2014, 63, 1912-1923.	3.1	50
59	Direct synthesis of polymer-grafted inorganic hybrids via reversible chain transfer catalyzed polymerization. Iranian Polymer Journal (English Edition), 2013, 22, 757-766.	2.4	2
60	"Grafting through―approach for synthesis of polystyrene/silica aerogel nanocomposites by in situ reversible addition-fragmentation chain transfer polymerization. Journal of Sol-Gel Science and Technology, 2013, 66, 337-344.	2.4	43
61	INVESTIGATING THE EFFECT OF MCM-41 NANOPARTICLES ON THE KINETICS OF ATOM TRANSFER RADICAL POLYMERIZATION OF STYRENE. Nano, 2013, 08, 1350018.	1.0	8
62	Kinetic investigation of the reversible addition-fragmentation chain transfer polymerization of 1,3-butadiene. Journal of Polymer Research, 2013, 20, 1.	2.4	17
63	In situ atom transfer radical polymerization of styrene in the presence of nanoporous silica aerogel: Kinetic study and investigation of thermal properties. Journal of Polymer Research, 2013, 20, 1.	2.4	28
64	Effect of Nanoclay on Styrene and Butyl Acrylate AGET ATRP in Miniemulsion: Study of Nucleation Type, Kinetics, and Polymerization Control. International Journal of Chemical Kinetics, 2013, 45, 221-235.	1.6	16
65	Synthesis of hybrid free and nanoporous silica aerogel-anchored polystyrene chains via in situ atom transfer radical polymerization. Polymer Composites, 2013, 34, 1648-1654.	4.6	23
66	Effect of Loading and Surface Modification of Nanoparticles on the Properties of PMMA/Silica Nanocomposites Prepared via In-Situ Free Radical Polymerization. International Journal of Polymeric Materials and Polymeric Biomaterials, 2013, 62, 336-344.	3.4	20
67	Polystyrene–organoclay nanocomposites produced by in situ activators regenerated by electron transfer for atom transfer radical polymerization. Journal of Polymer Engineering, 2012, 32, 235-243.	1.4	11
68	Effect of silica nanoparticle loading and surface modification on the kinetics of RAFT polymerization. Journal of Polymer Engineering, 2012, 32, .	1.4	18
69	Synthesis of well-defined clay encapsulated poly(styrene-co-butyl acrylate) nanocomposite latexes via reverse atom transfer radical polymerization in miniemulsion. Journal of Polymer Engineering, 2012, 32, .	1.4	16
70	Kinetic study of in situ normal and AGET atom transfer radical copolymerization of <i>n</i> –butyl acrylate and styrene: Effect of nanoclay loading and catalyst concentration. International Journal of Chemical Kinetics, 2012, 44, 789-799.	1.6	4
71	Properties of matrix-grafted multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposites synthesized by in situ reversible addition-fragmentation chain transfer polymerization. Journal of the Iranian Chemical Society, 2012, 9, 877-887.	2.2	34
72	Cellular infiltration on nanofibrous scaffolds using a modified electrospinning technique. Biochemical and Biophysical Research Communications, 2012, 423, 50-54.	2.1	54

#	Article	IF	CITATIONS
73	Study of kinetics and properties of polystyrene/silica nanocomposites prepared via in situ free radical and reversible addition-fragmentation chain transfer polymerizations. Scientia Iranica, 2012, 19, 2004-2011.	0.4	27
74	EFFECT OF CARBON NANOTUBES ON THE KINETICS OF <i>IN SITU</i> POLYMERIZATION OF METHYL METHACRYLATE. Nano, 2012, 07, 1250003.	1.0	18
75	Effect of different modified nanoclays on the kinetics of preparation and properties of polymer-based nanocomposites. Journal of Polymer Research, 2012, 19, 1.	2.4	34
76	Properties of PMMA/Carbon nanotubes nanocomposites prepared by "grafting through―method. Polymer Composites, 2012, 33, 215-224.	4.6	47
77	In Situ Controlled Radical Polymerization: AÂReview on Synthesis of Well-defined Nanocomposites. Polymer Reviews, 2012, 52, 142-188.	10.9	106
78	Matrixâ€grafted multiwalled carbon nanotubes/poly(methyl methacrylate) nanocomposites synthesized by in situ RAFT polymerization: A kinetic study. International Journal of Chemical Kinetics, 2012, 44, 555-569.	1.6	49
79	Nanoclayâ€encapsulated polystyrene microspheres by reverse atom transfer radical polymerization. Polymer Composites, 2012, 33, 990-998.	4.6	28
80	Use of clay-anchored reactive modifier for the synthesis of poly (styrene-co-butyl acrylate)/clay nanocomposite via in situ AGET ATRP. Journal of Polymer Research, 2012, 19, 1.	2.4	39
81	A study on the properties of PMMA/silica nanocomposites prepared via RAFT polymerization. Journal of Polymer Research, 2012, 19, 1.	2.4	45
82	Encapsulation of organomodified montmorillonite with PMMA via in situ SR&NI ATRP in miniemulsion. Journal of Polymer Research, 2012, 19, 1.	2.4	36
83	Modeling of precipitation polymerization II: calculation of macroradicals concentrations in the continuous and dispersed phases. Polymer Bulletin, 2012, 68, 1603-1621.	3.3	1
84	Well-defined nanofiberous polystyrene nanocomposites with twofold chains by ATRP. Polymer Science - Series B, 2012, 54, 153-160.	0.8	12
85	Evaluation of the confinement effect of nanoclay on the kinetics of styrene atom transfer radical polymerization. Journal of Applied Polymer Science, 2012, 123, 409-417.	2.6	39
86	Synthesis of clayâ€dispersed poly(styreneâ€ <i>co</i> â€methyl methacrylate) nanocomposite via miniemulsion atom transfer radical polymerization: A reverse approach. Journal of Applied Polymer Science, 2012, 124, 2278-2286.	2.6	39
87	Enhanced Infiltration and Biomineralization of Stem Cells on Collagen-Grafted Three-Dimensional Nanofibers. Tissue Engineering - Part A, 2011, 17, 1209-1218.	3.1	49
88	Investigating the effect of pristine and modified silica nanoparticles on the kinetics of methyl methacrylate polymerization. Chemical Engineering Journal, 2011, 174, 368-375.	12.7	39
89	An exhaustive study of chain-length-dependent and diffusion-controlled free radical and atom-transfer radical polymerization of styrene. Journal of Polymer Research, 2011, 18, 1539-1555.	2.4	10
90	Synthesis and characterization of poly(styreneâ€ <i>co</i> â€butyl acrylate)/clay nanocomposite latexes in miniemulsion by AGET ATRP. Polymer Composites, 2011, 32, 967-975.	4.6	34

#	Article	IF	CITATIONS
91	Synthesis and characterization of exfoliated poly(styreneâ€ <i>co</i> â€methyl methacrylate) nanocomposite via miniemulsion atom transfer radical polymerization: an activators generated by electron transfer approach. Polymer Composites, 2011, 32, 1979-1987.	4.6	33
92	A simulation of kinetics and chain length distribution of styrene FRP and ATRP: Chainâ€lengthâ€dependent termination. Advances in Polymer Technology, 2011, 30, 257-268.	1.7	16
93	Preparation of tailor-made polystyrene nanocomposite with mixed clay-anchored and free chains via atom transfer radical polymerization. AICHE Journal, 2011, 57, 1873-1881.	3.6	49
94	Preparation of nanoclayâ€dispersed polystyrene nanofibers via atom transfer radical polymerization and electrospinning. Journal of Applied Polymer Science, 2011, 120, 1431-1438.	2.6	40
95	Nanofiber-based polyelectrolytes as novel membranes for fuel cell applications. Journal of Membrane Science, 2011, 368, 233-240.	8.2	128
96	Simulation of styrene free radical polymerization over bi-functional initiators using Monte Carlo simulation method and comparison with mono-functional initiators. Polymer Science - Series B, 2010, 52, 184-192.	0.8	10
97	A comprehensive Monte Carlo simulation of styrene atom transfer radical polymerization. Chinese Journal of Polymer Science (English Edition), 2010, 28, 483-497.	3.8	31
98	Effect of chemical components of emulsion polymerization in aqueous media on Na-MMT nanostructure by XRD analysis. Journal of Polymer Research, 2010, 17, 309-313.	2.4	7
99	Synthesis and characterization of clay dispersed polystyrene nanocomposite via atom transfer radical polymerization. Polymer Composites, 2010, 31, 1829-1837.	4.6	46
100	Accelerated Epidermal Regeneration and Improved Dermal Reconstruction Achieved by Polyethersulfone Nanofibers. Tissue Engineering - Part A, 2010, 16, 3527-3536.	3.1	72
101	Application of Monte Carlo simulation method to polymerization kinetics over Ziegler–Natta catalysts. International Journal of Chemical Kinetics, 2009, 41, 45-56.	1.6	18
102	Dynamic mechanical study of epoxy, epoxy/glass, and glass/epoxy/wood hybrid composites aged in various media. Polymer Composites, 2009, 30, 1761-1770.	4.6	3
103	Improved infiltration of stem cells on electrospun nanofibers. Biochemical and Biophysical Research Communications, 2009, 382, 129-133.	2.1	88
104	In vitro Differentiation of Human Cord Blood-Derived Unrestricted Somatic Stem Cells into Hepatocyte-Like Cells on Poly(ε-Caprolactone) Nanofiber Scaffolds. Cells Tissues Organs, 2009, 190, 135-149.	2.3	75
105	Application of the Monte Carlo simulation method to the Investigation of the effect of chain-length-dependent bimolecular termination on ATRP. E-Polymers, 2009, 9, .	3.0	4
106	QUANTITATIVE EVALUATION OF ARRANGEMENT OF MONOMERS IN LINEAR BINARY COPOLYMERS USING A MONTE CARLO SIMULATION METHOD. Chinese Journal of Polymer Science (English Edition), 2009, 27, 195.	3.8	1
107	Synthesis and Characterization of a New Semi-Aliphatic Poly(amide-imide) and Evaluation of the Effect of Reaction Conditions. Designed Monomers and Polymers, 2008, 11, 223-234.	1.6	5
108	Investigation of Ethylene Polymerization Kinetics over Ziegler-Natta Catalysts: Employing Moment Equation Modeling to Study the Effect of Different Active Centers on Homopolymerization Kinetics. E-Polymers, 2008, 8, .	3.0	2

#	Article	IF	CITATIONS
109	Modeling of Precipitation Polymerization I: The Method of Finite Molecular Weight Moments. E-Polymers, 2007, 7, .	3.0	2
110	Nanofibrous Poly(ε-Caprolactone)/Poly(Vinyl Alcohol)/Chitosan Hybrid Scaffolds for Bone Tissue Engineering using Mesenchymal Stem Cells. International Journal of Artificial Organs, 2007, 30, 204-211.	1.4	68
111	Application of the Monte Carlo simulation method to the investigation of peculiar freeâ€radical copolymerization reactions: Systems with both reactivity ratios greater than unity (<i>r_A</i> > 1 and <i>r_B</i> > 1). Journal of Applied Polymer Science, 2007, 106. 4138-4147.	2.6	18
112	Electrical and Mechanical Properties of Conducive Carbon Black/Polyolefin Composites Mixed With Carbon Fiber. Journal of ASTM International, 2006, 3, 100431.	0.2	5
113	Comprehensive Study of Free Radical Copolymerization Using a Monte Carlo Simulation Method, 1. Macromolecular Theory and Simulations, 2005, 14, 325-336.	1.4	34
114	Bioadhesion and biocompatibility evaluations of gelatin and polyacrylic acid as a crosslinked hydrogel in vitro. Journal of Biomaterials Science, Polymer Edition, 2004, 15, 1019-1031.	3.5	24
115	Processing Effects on Electrical Conductivity and Mechanical Properties of Particulate Composite. , 2004, , 72-77.		0
116	Radiation graft modification of ethylene-propylene rubber—III. Effect on water uptake, wettability and biocompatibility. Radiation Physics and Chemistry, 1996, 47, 907-912.	2.8	16
117	Preparation and evaluation of electrocatalytic oxide coatings on conductive carbon-polymer composite substrates for use as dimensionally stable anodes. Journal of Applied Electrochemistry, 1996, 26, 1117.	2.9	15
118	Carbon–polymer composite electrodes for redox cells. Journal of Applied Polymer Science, 1995, 57, 1455-1463.	2.6	57
119	Conductive carbon-polypropylene composite electrodes for vanadium redox battery. Journal of Applied Electrochemistry, 1995, 25, 29.	2.9	61
120	Radiation graft modification of ethylene-propylene rubber—II. Effect of additives. Radiation Physics and Chemistry, 1995, 45, 191-198.	2.8	25
121	Radiation graft modification of ethylene-propylene rubber—I. Effect of monomer and substrate structure. Radiation Physics and Chemistry, 1994, 44, 385-393.	2.8	15