Klaus Palme

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3701931/publications.pdf

Version: 2024-02-01

15466 9073 22,508 198 65 144 citations h-index g-index papers 209 209 209 16115 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Color recycling: metabolization of apocarotenoid degradation products suggests carbon regeneration via primary metabolic pathways. Plant Cell Reports, 2022, 41, 961-977.	2.8	5
2	CDC48B facilitates the intercellular trafficking of SHORTâ€ROOT during radial patterning in roots. Journal of Integrative Plant Biology, 2022, 64, 843-858.	4.1	5
3	A simple pipeline for cell cycle kinetic studies in the root apical meristem. Journal of Experimental Botany, 2022, 73, 4683-4695.	2.4	5
4	The role of <i>AUX1</i> during lateral root development in the domestication of the model C4 grass <i>Setaria italica</i> Journal of Experimental Botany, 2022, 73, 2021-2034.	2.4	7
5	Determination of protoplast growth properties using quantitative single-cell tracking analysis. Plant Methods, 2022, 18, 64.	1.9	1
6	Auxin biosynthesis and cellular efflux act together to regulate leaf vein patterning. Journal of Experimental Botany, 2021, 72, 1151-1165.	2.4	24
7	AtNSF regulates leaf serration by modulating intracellular trafficking of PIN1 in Arabidopsis thaliana. Journal of Integrative Plant Biology, 2021, 63, 737-755.	4.1	12
8	Flavonolâ€mediated stabilization of PIN efflux complexes regulates polar auxin transport. EMBO Journal, 2021, 40, e104416.	3.5	61
9	Molecular Control of Sporophyte-Gametophyte Ontogeny and Transition in Plants. Frontiers in Plant Science, 2021, 12, 789789.	1.7	4
10	Editorial: Plant Development: From Cells to Systems Biology. Frontiers in Plant Science, 2021, 12, 810071.	1.7	0
11	Small molecules mediate cellular reprogramming across two kingdoms. Journal of Experimental Botany, 2021, 72, 7645-7647.	2.4	1
12	Cell Dynamics in WOX5-Overexpressing Root Tips: The Impact of Local Auxin Biosynthesis. Frontiers in Plant Science, 2020, 11, 560169.	1.7	26
13	Glutathione Enhances Auxin Sensitivity in Arabidopsis Roots. Biomolecules, 2020, 10, 1550.	1.8	18
14	Retrograde Induction of phyB Orchestrates Ethylene-Auxin Hierarchy to Regulate Growth. Plant Physiology, 2020, 183, 1268-1280.	2.3	27
15	Butylated Hydroxytoluene (BHT) Inhibits PIN1 Exocytosis From BFA Compartments in Arabidopsis Roots. Frontiers in Plant Science, 2020, 11, 393.	1.7	5
16	3D Analysis of Mitosis Distribution Pattern in the Plant Root Tip with iRoCS Toolbox. Methods in Molecular Biology, 2020, 2094, 119-125.	0.4	16
17	Settling for Less: Do Statoliths Modulate Gravity Perception?. Plants, 2020, 9, 121.	1.6	3
18	Striving Towards Abiotic Stresses: Role of the Plant CDPK Superfamily Members. , 2019, , 99-105.		4

#	Article	IF	CITATIONS
19	Natural Auxin Does Not Inhibit Brefeldin A Induced PIN1 and PIN2 Internalization in Root Cells. Frontiers in Plant Science, 2019, 10, 574.	1.7	22
20	The MKK7-MPK6 MAP Kinase Module Is a Regulator of Meristem Quiescence or Active Growth in Arabidopsis. Frontiers in Plant Science, 2019, 10, 202.	1.7	14
21	Salicylic Acid Affects Root Meristem Patterning via Auxin Distribution in a Concentration-Dependent Manner. Plant Physiology, 2019, 180, 1725-1739.	2.3	114
22	U-Net: deep learning for cell counting, detection, and morphometry. Nature Methods, 2019, 16, 67-70.	9.0	1,242
23	The Systems Architecture of Molecular Memory in Poplar after Abiotic Stress. Plant Cell, 2019, 31, 346-367.	3.1	29
24	AUX1-mediated root hair auxin influx governs SCFTIR1/AFB-type Ca2+ signaling. Nature Communications, 2018, 9, 1174.	5.8	160
25	Converging Light, Energy and Hormonal Signaling Control Meristem Activity, Leaf Initiation, and Growth. Plant Physiology, 2018, 176, 1365-1381.	2.3	45
26	Data-Driven Modeling of Intracellular Auxin Fluxes Indicates a Dominant Role of the ER in Controlling Nuclear Auxin Uptake. Cell Reports, 2018, 22, 3044-3057.	2.9	25
27	Naphthylphthalamic acid and the mechanism of polar auxin transport. Journal of Experimental Botany, 2018, 69, 303-312.	2.4	97
28	Characterization of auxin transporter <scp>PIN</scp> 6 plasma membrane targeting reveals a function for <scp>PIN</scp> 6 in plant bolting. New Phytologist, 2018, 217, 1610-1624.	3.5	39
29	Coevolving <scp>MAPK</scp> and <scp>PID</scp> phosphosites indicate an ancient environmental control of <scp>PIN</scp> auxin transporters in land plants. FEBS Letters, 2018, 592, 89-102.	1.3	48
30	MicroRNA as an Integral Part of Cell Communication: Regularized Target Prediction and Network Prediction. Lecture Notes in Bioengineering, 2018, , 85-100.	0.3	0
31	Root Gravitropism Is Regulated by a Crosstalk between <i>para</i> -Aminobenzoic Acid, Ethylene, and Auxin. Plant Physiology, 2018, 178, 1370-1389.	2.3	33
32	Method for Ultrarapid High-Content Screening for Biologically Active Chemicals Using Plant Pollen. Methods in Molecular Biology, 2018, 1795, 27-37.	0.4	0
33	Gravitropism in Higher Plants: Molecular Aspects. SpringerBriefs in Space Life Sciences, 2018, , 93-111.	0.1	1
34	Functional Analysis of the Arabidopsis thaliana CDPK-Related Kinase Family: AtCRK1 Regulates Responses to Continuous Light. International Journal of Molecular Sciences, 2018, 19, 1282.	1.8	27
35	Gravitational Biology I. SpringerBriefs in Space Life Sciences, 2018, , .	0.1	20
36	A PLA-iRoCS Pipeline for the Localization of Protein–Protein Interactions In Situ. Methods in Molecular Biology, 2018, 1787, 161-170.	0.4	2

#	Article	IF	Citations
37	Interplay of the two ancient metabolites auxin and MEcPP regulates adaptive growth. Nature Communications, 2018, 9, 2262.	5.8	27
38	Auxin-Induced Plasma Membrane Depolarization Is Regulated by Auxin Transport and Not by AUXIN BINDING PROTEIN1. Frontiers in Plant Science, 2018, 9, 1953.	1.7	19
39	The Systems Biology of Auxin in Developing Embryos. Trends in Plant Science, 2017, 22, 225-235.	4.3	37
40	A method for characterizing phenotypic changes in highly variable cell populations and its application to high content screening of <i>Arabidopsis thaliana</i> protoplasts. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2017, 91, 326-335.	1.1	3
41	Protoplast Swelling and Hypocotyl Growth Depend on Different Auxin Signaling Pathways. Plant Physiology, 2017, 175, 982-994.	2.3	19
42	3D analysis of mitosis distribution highlights the longitudinal zonation and diarch symmetry in proliferation activity of the <i>Arabidopsis thaliana</i> i> root meristem. Plant Journal, 2017, 92, 834-845.	2.8	32
43	A 3D digital atlas of the <i>Nicotiana tabacum</i> root tip and its use to investigate changes in the root apical meristem induced by the <i>Agrobacterium 6b</i> oncogene. Plant Journal, 2017, 92, 31-42.	2.8	24
44	Novel small molecule modulators of plant growth and development identified by high-content screening with plant pollen. BMC Plant Biology, 2016, 16, 192.	1.6	12
45	Plant Signaling: HY5 Synchronizes Resource Supply. Current Biology, 2016, 26, R328-R329.	1.8	5
46	Hydrolases of the ILR1-like family of Arabidopsis thaliana modulate auxin response by regulating auxin homeostasis in the endoplasmic reticulum. Scientific Reports, 2016, 6, 24212.	1.6	57
47	ROSY1, a novel regulator of gravitropic response is a stigmasterol binding protein. Journal of Plant Physiology, 2016, 196-197, 28-40.	1.6	27
48	Inhibition of Cell Expansion by Rapid ABP1-Mediated Auxin Effect on Microtubules? A Critical Comment. Plant Physiology, 2016, 170, 23-25.	2.3	9
49	2-D Clinostat for Simulated Microgravity Experiments with Arabidopsis Seedlings. Microgravity Science and Technology, 2016, 28, 59-66.	0.7	15
50	Protocol: an improved and universal procedure for whole-mount immunolocalization in plants. Plant Methods, 2015, 11, 50.	1.9	128
51	Identification of the arabidopsis RAM/MOR signalling network: adding new regulatory players in plant stem cell maintenance and cell polarization. Annals of Botany, 2015, 116, 69-89.	1.4	9
52	Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nature Communications, 2015, 6, 6279.	5.8	211
53	Ethylene negatively regulates transcript abundance of ROP-GAP rheostat-encoding genes and affects apoplastic reactive oxygen species homeostasis in epicarps of cold stored apple fruits. Journal of Experimental Botany, 2015, 66, 7255-7270.	2.4	42
54	RNAi-mediated downregulation of poplar plasma membrane intrinsic proteins (PIPs) changes plasma membrane proteome composition and affects leaf physiology. Journal of Proteomics, 2015, 128, 321-332.	1.2	19

#	Article	IF	CITATIONS
55	The <scp>iRoCS T</scp> oolbox – 3 <scp>D</scp> analysis of the plant root apical meristem at cellular resolution. Plant Journal, 2014, 77, 806-814.	2.8	80
56	Rotation-Invariant HOG Descriptors Using Fourier Analysis in Polar and Spherical Coordinates. International Journal of Computer Vision, 2014, 106, 342-364.	10.9	119
57	A tobacco homolog of DCN1 is involved in pollen development and embryogenesis. Plant Cell Reports, 2014, 33, 1187-1202.	2.8	11
58	Towards Second Green Revolution: Engineering Nitrogen Use Efficiency. Journal of Genetics and Genomics, 2014, 41, 315-316.	1.7	12
59	Accurate Detection in Volumetric Images Using Elastic Registration Based Validation. Lecture Notes in Computer Science, 2014, , 453-463.	1.0	2
60	Root gravitropism and root hair development constitute coupled developmental responses regulated by auxin homeostasis in the <i>Arabidopsis</i> root apex. New Phytologist, 2013, 197, 1130-1141.	3.5	115
61	Plastid-Localized Glutathione Reductase2-Regulated Glutathione Redox Status Is Essential for Arabidopsis Root Apical Meristem Maintenance. Plant Cell, 2013, 25, 4451-4468.	3.1	126
62	Variational attenuation correction in two-view confocal microscopy. BMC Bioinformatics, 2013, 14, 366.	1.2	4
63	Variational attenuation correction of two-view confocal microscopic recordings. , 2013, , .		0
64	Modification of plant <scp>R</scp> ac/ <scp>R</scp> op <scp>GTP</scp> ase signalling using bacterial toxin transgenes. Plant Journal, 2013, 73, 314-324.	2.8	8
65	<i>ERECTA</i> Family Genes Regulate Auxin Transport in the Shoot Apical Meristem and Forming Leaf Primordia. Plant Physiology, 2013, 162, 1978-1991.	2.3	65
66	Inactivation of Plasma Membrane–Localized CDPK-RELATED KINASE5 Decelerates PIN2 Exocytosis and Root Gravitropic Response in <i>Arabidopsis</i> Å Â. Plant Cell, 2013, 25, 1592-1608.	3.1	87
67	The Arabidopsis thaliana Mob1A gene is required for organ growth and correct tissue patterning of the root tip. Annals of Botany, 2013, 112, 1803-1814.	1.4	18
68	Root systems analysis branches out. Molecular Systems Biology, 2013, 9, 698.	3.2	1
69	Joint 3D cell segmentation and classification in the Arabidopsis root using energy minimization and shape priors. , 2013, , .		4
70	A quantitative ratiometric sensor for time-resolved analysis of auxin dynamics. Scientific Reports, 2013, 3, 2052.	1.6	68
71	Maternal Control of PIN1 Is Required for Female Gametophyte Development in Arabidopsis. PLoS ONE, 2013, 8, e66148.	1.1	106
72	Discriminative Detection and Alignment in Volumetric Data. Lecture Notes in Computer Science, 2013, , 205-214.	1.0	4

#	Article	IF	Citations
73	Intracellular auxin transport in pollen. Plant Signaling and Behavior, 2012, 7, 1504-1505.	1.2	27
74	AUTOSCREEN - A novel platform concept for automated high throughput and high end microscopy. Biomedizinische Technik, 2012, 57, .	0.9	0
75	Expression and tissueâ€specific localization of nitrateâ€responsive miRNAs in roots of maize seedlings. Plant, Cell and Environment, 2012, 35, 1137-1155.	2.8	64
76	Retargeting a maize \hat{l}^2 -glucosidase to the vacuole $\hat{a} \in \hat{l}^4$ Evidence from intact plants that zeatin-O-glucoside is stored in the vacuole. Phytochemistry, 2012, 79, 67-77.	1.4	22
77	The endoplasmic reticulum localized PIN8 is a pollenâ€specific auxin carrier involved in intracellular auxin homeostasis. Plant Journal, 2012, 71, 860-870.	2.8	140
78	Modeling of Sparsely Sampled Tubular Surfaces Using Coupled Curves. Lecture Notes in Computer Science, 2012, , 83-92.	1.0	6
79	Sporophytic and gametophytic functions of the cell cycle-associated Mob1 gene in Arabidopsis thaliana L Gene, 2011, 484, 1-12.	1.0	21
80	Arginine Decarboxylase expression, polyamines biosynthesis and reactive oxygen species during organogenic nodule formation in hop. Plant Signaling and Behavior, 2011, 6, 258-269.	1.2	17
81	A Tobacco Homolog of DCN1 is Involved in Cellular Reprogramming and in Developmental Transitions. Nature Precedings, 2011, , .	0.1	0
82	Jasmonate modulates endocytosis and plasma membrane accumulation of the Arabidopsis PIN2 protein. New Phytologist, 2011, 191, 360-375.	3.5	131
83	SHORT-ROOT Regulates Primary, Lateral, and Adventitious Root Development in Arabidopsis Â. Plant Physiology, 2011, 155, 384-398.	2.3	163
84	The Basic Helix-Loop-Helix Transcription Factor MYC2 Directly Represses < i>PLETHORA < /i> Expression during Jasmonate-Mediated Modulation of the Root Stem Cell Niche in < i> Arabidopsis < /i > \hat{A} \hat{A} . Plant Cell, 2011, 23, 3335-3352.	3.1	374
85	3D Rotation-Invariant Description from Tensor Operation on Spherical HOG Field., 2011, , .		2
86	Auxin Binding Protein 1 for Root Growth., 2011,, 214-229.		0
87	Perspectives in Nanoparticle Imaging of Living Cells. , 2010, , .		0
88	Seasonal and cell type specific expression of sulfate transporters in the phloem of Populus reveals tree specific characteristics for SO4 2â ⁻ storage and mobilization. Plant Molecular Biology, 2010, 72, 499-517.	2.0	34
89	Intracellular FRET analysis of lipid/DNA complexes using flow cytometry and fluorescence imaging techniques. Journal of Controlled Release, 2010, 145, 289-296.	4.8	17
90	BLOS1, a putative BLOC-1 subunit, interacts with SNX1 and modulates root growth in Arabidopsis. Journal of Cell Science, 2010, 123, 3727-3733.	1.2	27

#	Article	IF	Citations
91	<i>NO VEIN</i> facilitates auxin-mediated development in Arabidopsis. Plant Signaling and Behavior, 2010, 5, 1249-1251.	1.2	3
92	Semi-supervised Learning of Edge Filters for Volumetric Image Segmentation. Lecture Notes in Computer Science, 2010, , 462-471.	1.0	1
93	3D Object Detection Using a Fast Voxel-Wise Local Spherical Fourier Tensor Transformation. Lecture Notes in Computer Science, 2010, , 412-421.	1.0	3
94	NO VEIN Mediates Auxin-Dependent Specification and Patterning in the Arabidopsis Embryo, Shoot, and Root. Plant Cell, 2009, 21, 3133-3151.	3.1	36
95	Heteromeric AtKC1·AKT1 Channels in Arabidopsis Roots Facilitate Growth under K+-limiting Conditions. Journal of Biological Chemistry, 2009, 284, 21288-21295.	1.6	152
96	<i>Arabidopsis ASA1</i> Is Important for Jasmonate-Mediated Regulation of Auxin Biosynthesis and Transport during Lateral Root Formation Â. Plant Cell, 2009, 21, 1495-1511.	3.1	312
97	The Histidine Kinases CYTOKININ-INDEPENDENT1 and ARABIDOPSIS HISTIDINE KINASE2 and 3 Regulate Vascular Tissue Development in (i) Arabidopsis (i) Shoots. Plant Cell, 2009, 21, 2008-2021.	3.1	121
98	The Ectomycorrhizal Fungus <i>Laccaria bicolor</i> Stimulates Lateral Root Formation in Poplar and Arabidopsis through Auxin Transport and Signaling. Plant Physiology, 2009, 151, 1991-2005.	2.3	244
99	The evolution of nuclear auxin signalling. BMC Evolutionary Biology, 2009, 9, 126.	3.2	115
100	Salt-dependent regulation of a CNG channel subfamily in Arabidopsis. BMC Plant Biology, 2009, 9, 140.	1.6	95
101	The AUXIN BINDING PROTEIN 1 Is Required for Differential Auxin Responses Mediating Root Growth. PLoS ONE, 2009, 4, e6648.	1.1	124
102	A cysteineâ€rich receptorâ€like kinase NCRK and a pathogenâ€induced protein kinase RBK1 are Rop GTPase interactors. Plant Journal, 2008, 53, 909-923.	2.8	56
103	Blue shift of CdSe/ZnS nanocrystal-labels upon DNA-hybridization. Journal of Nanobiotechnology, 2008, 6, 7.	4.2	30
104	Sterol-dependent endocytosis mediates post-cytokinetic acquisition of PIN2 auxin efflux carrier polarity. Nature Cell Biology, 2008, 10, 237-244.	4.6	313
105	Spatioâ€temporal quantification of differential growth processes in root growth zones based on a novel combination of image sequence processing and refined concepts describing curvature production. New Phytologist, 2008, 177, 811-821.	3.5	59
106	Organogenic nodule development in hop (Humulus lupulus L.): Transcript and metabolic responses. BMC Genomics, 2008, 9, 445.	1.2	17
107	A New Gene for Auxin Synthesis. Cell, 2008, 133, 31-32.	13.5	20
108	Mechanical induction of lateral root initiation in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18818-18823.	3.3	288

#	Article	IF	Citations
109	Comprehensive Transcriptome Analysis of Auxin Responses in Arabidopsis. Molecular Plant, 2008, 1, 321-337.	3.9	308
110	Mutation of the Rice <i>Narrow leaf1</i> Gene, Which Encodes a Novel Protein, Affects Vein Patterning and Polar Auxin Transport. Plant Physiology, 2008, 147, 1947-1959.	2.3	232
111	An Integrated View of Gene Expression and Solute Profiles of Arabidopsis Tumors: A Genome-Wide Approach. Plant Cell, 2007, 18, 3617-3634.	3.1	101
112	Ubiquitin Lysine 63 Chain–Forming Ligases Regulate Apical Dominance in Arabidopsis. Plant Cell, 2007, 19, 1898-1911.	3.1	97
113	Towards plant systems biology $\hat{a} \in ``novel mathematical approaches to enable quantitative analysis of growth processes. New Phytologist, 2006, 171, 443-444.$	3.5	4
114	Auxin in action: signalling, transport and the control of plant growth and development. Nature Reviews Molecular Cell Biology, 2006, 7, 847-859.	16.1	1,022
115	Vectorial Information for Arabidopsis Planar Polarity Is Mediated by Combined AUX1, EIN2, and GNOM Activity. Current Biology, 2006, 16, 2143-2149.	1.8	141
116	Auxin Immunolocalization Implicates Vesicular Neurotransmitter-Like Mode of Polar Auxin Transport in Root Apices. Plant Signaling and Behavior, 2006, 1, 122-133.	1.2	91
117	The TORNADO1 and TORNADO2 Genes Function in Several Patterning Processes during Early Leaf Development in Arabidopsis thaliana. Plant Cell, 2006, 18, 852-866.	3.1	96
118	Immunophilin-like TWISTED DWARF1 Modulates Auxin Efflux Activities of Arabidopsis P-glycoproteins*. Journal of Biological Chemistry, 2006, 281, 30603-30612.	1.6	181
119	Fast Scalar and Vectorial Grayscale Based Invariant Features for 3D Cell Nuclei Localization and Classification. Lecture Notes in Computer Science, 2006, , 182-191.	1.0	12
120	Auxin and the developing root of Arabidopsis thaliana. Physiologia Plantarum, 2005, 123, 130-138.	2.6	55
121	The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature, 2005, 433, 39-44.	13.7	1,789
122	Auxin, Ethylene and Brassinosteroids: Tripartite Control of Growth in the Arabidopsis Hypocotyl. Plant and Cell Physiology, 2005, 46, 827-836.	1.5	146
123	Phytohormones and Signal Transduction Pathways in Plants. , 2005, , 137-147.		4
124	The PIN auxin efflux facilitators: evolutionary and functional perspectives. Trends in Plant Science, 2005, 10, 170-177.	4.3	383
125	A PINOID-Dependent Binary Switch in Apical-Basal PIN Polar Targeting Directs Auxin Efflux. Science, 2004, 306, 862-865.	6.0	703
126	The HALTED ROOT gene encoding the 26S proteasome subunit RPT2a is essential for the maintenance of Arabidopsis meristems. Development (Cambridge), 2004, 131, 2101-2111.	1.2	101

#	Article	IF	Citations
127	Auxin activatesKAT1andKAT2, two K+-channel genes expressed in seedlings ofArabidopsis thaliana. Plant Journal, 2004, 37, 815-827.	2.8	97
128	Small GTPases in vesicle trafficking. Current Opinion in Plant Biology, 2004, 7, 694-700.	3.5	132
129	Loss of AtPIN1 does not influence the in vitro morphogenic potential of Arabidopsis thaliana suspension cultures. Plant Cell, Tissue and Organ Culture, 2004, 79, 181-188.	1.2	0
130	Automated whole mount localisation techniques for plant seedlings. Plant Journal, 2003, 34, 115-124.	2.8	126
131	Cell Polarity and PIN Protein Positioning in Arabidopsis Require STEROL METHYLTRANSFERASE1 Function. Plant Cell, 2003, 15, 612-625.	3.1	260
132	The Arabidopsis Mutant alh1 Illustrates a Cross Talk between Ethylene and Auxin. Plant Physiology, 2003, 131, 1228-1238.	2.3	95
133	Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2987-2991.	3.3	509
134	F-Actin-Dependent Endocytosis of Cell Wall Pectins in Meristematic Root Cells. Insights from Brefeldin A-Induced Compartments. Plant Physiology, 2002, 130, 422-431.	2.3	257
135	AtKC1, a silentArabidopsispotassium channel \hat{l}_{\pm} -subunit modulates root hair K+influx. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4079-4084.	3.3	207
136	hydra Mutants of Arabidopsis Are Defective in Sterol Profiles and Auxin and Ethylene Signaling. Plant Cell, 2002, 14, 1017-1031.	3.1	187
137	AtPIN4 Mediates Sink-Driven Auxin Gradients and Root Patterning in Arabidopsis. Cell, 2002, 108, 661-673.	13.5	763
138	KCO1 is a component of the slow-vacuolar (SV) ion channel. FEBS Letters, 2002, 511, 28-32.	1.3	56
139	Cell Polarity Signaling in Arabidopsis Involves a BFA-Sensitive Auxin Influx Pathway. Current Biology, 2002, 12, 329-334.	1.8	131
140	Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature, 2002, 415, 806-809.	13.7	1,299
141	Polar auxin transport – old questions and new concepts?. Plant Molecular Biology, 2002, 49, 273-284.	2.0	253
142	Polar auxin transport â€" old questions and new concepts?. , 2002, , 273-284.		93
143	Polar auxin transportold questions and new concepts?. Plant Molecular Biology, 2002, 49, 273-84.	2.0	98
144	Mass spectrometric analysis reveals a cysteine bridge between residues 2 and 61 of the auxin-binding protein 1 from Zea mays L. FEBS Letters, 2001, 509, 446-450.	1.3	13

#	Article	IF	Citations
145	The auxin signal for protoplast swelling is perceived by extracellular ABP1. Plant Journal, 2001, 27, 591-599.	2.8	106
146	Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature, 2001, 413, 425-428.	13.7	1,174
147	BIG: a calossin-like protein required for polar auxin transport in Arabidopsis. Genes and Development, 2001, 15, 1985-1997.	2.7	250
148	bus, a Bushy Arabidopsis CYP79F1 Knockout Mutant with Abolished Synthesis of Short-Chain Aliphatic Glucosinolates. Plant Cell, 2001, 13, 351-367.	3.1	235
149	Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes and Development, 2001, 15, 2648-2653.	2.7	571
150	The DNA-binding activity of Gal4 is inhibited by methylation of the Gal4 binding site in plant chromatin. Plant Journal, 2000, 23, 143-157.	2.8	34
151	Localization of AtROP4 and AtROP6 and interaction with the guanine nucleotide dissociation inhibitor AtRhoGDI1 from Arabidopsis. Plant Molecular Biology, 2000, 42, 515-530.	2.0	88
152	Developmental regulation of the maize Zm-p60.1 gene encoding a \hat{l}^2 -glucosidase located to plastids. Planta, 2000, 210, 407-415.	1.6	45
153	Moving on up: auxin-induced K+ channel expression regulates gravitropism. Trends in Plant Science, 2000, 5, 85-86.	4.3	9
154	The role of cysteine residues in structure and enzyme activity of a maize \hat{l}^2 -glucosidase. FEBS Journal, 1999, 266, 1056-1065.	0.2	20
155	PIN-pointing the molecular basis of auxin transport. Current Opinion in Plant Biology, 1999, 2, 375-381.	3.5	193
156	Coordinated Polar Localization of Auxin Efflux Carrier PIN1 by GNOM ARF GEF. Science, 1999, 286, 316-318.	6.0	754
157	AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO Journal, 1998, 17, 6903-6911.	3.5	840
158	Single mutations strongly alter the K+ -selective pore of the Kin channel KAT1. FEBS Letters, 1998, 430, 370-376.	1.3	26
159	At-GDI1 from Arabidopsis thaliana encodes a rab-specific GDP dissociation inhibitor that complements the sec19 mutation of Saccharomyces cerevisiae. FEBS Letters, 1997, 403, 303-308.	1.3	30
160	Cloning and Biochemical Characterization of an Anionic Peroxidase from Zea Mays. FEBS Journal, 1997, 247, 826-832.	0.2	19
161	Phytohormones and Signal Transduction in Plants. , 1997, , 153-164.		0
162	Three-dimensional structure of glutathione S-transferase from Arabidopsis thaliana at 2.2 Ã resolution: Structural characterization of herbicide-conjugating plant glutathione S-transferases and a novel active site architecture. Journal of Molecular Biology, 1996, 255, 289-309.	2.0	200

#	Article	IF	Citations
163	Signal Sequence Trap to Clone cDNAs Encoding Secreted or Membrane-Associated Plant Proteins. Analytical Biochemistry, 1996, 243, 127-132.	1.1	18
164	The genes of plant signal transduction. Critical Reviews in Plant Sciences, 1996, 15, 425-454.	2.7	21
165	Receptor-like proteins of higher plants. , 1996, , 239-246.		0
166	Chapter 5 Photoaffinity Labeling and Strategies for Plasma Membrane Protein Purification. Methods in Cell Biology, 1995, 50, 51-60.	0.5	1
167	An upstream U-snRNA gene-like promoter is required for transcription of theArabidopsis thaliana7SL RNA gene. Nucleic Acids Research, 1995, 23, 1970-1976.	6.5	22
168	Subclass-specific sequence motifs identified in Rab GTPases. Trends in Biochemical Sciences, 1995, 20, 10-12.	3.7	55
169	Characterization of a new family of tobacco highly repetitive DNA, GRS, specific for the Nicotiana tomentosiformis genomic component. Chromosome Research, 1995, 3, 245-254.	1.0	55
170	Molecular Approaches to the Study of the Mechanism of Action of Auxins., 1995, , 354-371.		3
171	Purification and Characterization of a cAMP-Binding Protein of Volvox carteri f. nagariensis lyengar. FEBS Journal, 1995, 228, 480-489.	0.2	3
172	Cytokinin metabolism: implications for regulation of plant growth and development. Plant Molecular Biology, 1994, 26, 1483-1497.	2.0	82
173	The ERabp Gene Family: Structural and Physiological Analyses. , 1994, 62, 155-161.		1
174	Cytokinin metabolism: implications for regulation of plant growth and development., 1994,, 247-261.		0
175	Patch-clamp analysis establishes a role for an auxin binding protein in the auxin stimulation of plasma membrane current in Zea mays protoplasts. Plant Journal, 1993, 4, 41-46.	2.8	186
176	Molecular analysis of three maize 22 kDa auxin-binding protein genes - transient promoter expression and regulatory regions. Plant Journal, 1993, 4, 423-432.	2.8	47
177	From binding proteins to hormone receptors?. Journal of Plant Growth Regulation, 1993, 12, 171-178.	2.8	22
178	Two members of the ERabp gene family are expressed differentially in reproductive organs but to similar levels in the coleoptile of maize. Plant Molecular Biology, 1993, 23, 57-66.	2.0	23
179	Structure, expression, and phylogenetic relationships of a family of ypt genes encoding small G-proteins in the green alga Volvox carteri. Current Genetics, 1993, 24, 229-240.	0.8	33
180	On plant growth regulators and their metabolites: a changing perspective. Seminars in Cell Biology, 1993, 4, 87-92.	3.5	5

#	Article	IF	Citations
181	Genes involved in the control of growth and differentiation in plants. Gene, 1993, 135, 245-249.	1.0	8
182	An Auxin Binding Protein is Localized in the Symbiosome Membrane of Soybean Nodules. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1993, 48, 35-40.	0.6	14
183	Molecular Analysis of an Auxin Binding Protein Gene Located on Chromosome 4 of Arabidopsis. Plant Cell, 1992, 4, 193.	3.1	2
184	Auxin-binding proteins of <i>Zea mays</i> identified by photoaffinity labelling. Biochemical Society Transactions, 1992, 20, 70-73.	1.6	8
185	Molecular Analysis of Plant Signaling Elements: Relevance of Eukaryotic Signal Transduction Models. International Review of Cytology, 1992, 132, 223-283.	6.2	45
186	The yptV1 gene encodes a small G-protein in the green alga Volvox carteri: gene structure and properties of the gene product. Gene, 1992, 118, 153-162.	1.0	27
187	The Ncypt1 gene from Neurospora crassa is located on chromosome 2: molecular cloning and structural analysis. Molecular Genetics and Genomics, 1992, 235, 413-421.	2.4	15
188	A protein from maize labeled with azidoâ€IAA has novel βâ€glucosidase activity. Plant Journal, 1992, 2, 675-684.	2.8	61
189	Hormonal modulation of plant growth: the role of auxin perception. Mechanisms of Development, 1991, 33, 97-106.	1.7	51
190	Auxin receptors take shape. Current Biology, 1991, 1, 228-230.	1.8	7
191	Perception of the auxin signal at the plasma membrane of tobacco mesophyll protoplasts. Plant Journal, 1991, 1, 83-93.	2.8	199
192	Purification of tobacco nuclear proteins binding to a CACGTG motif of the chalcone synthase promoter by DNA affinity chromatography. FEBS Journal, 1991, 199, 519-527.	0.2	22
193	The Auxin-Binding-Protein from Maize Coleoptiles. , 1990, , 245-253.		1
194	Identification of Guanine-Nucleotide Binding Proteins in Plants: Structural Analysis and Evolutionary Comparison of the Ras-Related Ypt-Gene Family from Zea Mays., 1989,, 273-284.		10
195	A simple and general plant tissue extraction procedure for two-dimensional gel electrophoresis. Plant Cell Reports, 1987, 6, 77-81.	2.8	57
196	Expression of the polyoma middle-size T antigen in Escherichia col. FEBS Journal, 1986, 154, 581-585.	0.2	1
197	Charge isomers of Simian Virus 40 T-antigen. FEBS Letters, 1980, 118, 229-232.	1.3	6
198	In Vitro Uptake and Processing of Maize Auxin-Binding Proteins by ER-Derived Microsomes. Plant and Cell Physiology, 0, , .	1.5	2