Hugh C Jenkyns

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3701801/publications.pdf Version: 2024-02-01

HUCH C LENKYNS

#	Article	IF	CITATIONS
1	Geochemistry of oceanic anoxic events. Geochemistry, Geophysics, Geosystems, 2010, 11, .	2.5	1,111
2	Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature, 2000, 406, 392-395.	27.8	848
3	Cretaceous anoxic events: from continents to oceans. Journal of the Geological Society, 1980, 137, 171-188.	2.1	843
4	Carbon- and oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance. Geological Magazine, 1994, 131, 1-34.	1.5	580
5	Secular variation in Late Cretaceous carbon isotopes: a new δ13C carbonate reference curve for the Cenomanian–Campanian (99.6–70.6 Ma). Geological Magazine, 2006, 143, 561-608.	1.5	516
6	Chemostratigraphy of the Jurassic System: applications, limitations and implications for palaeoceanography. Journal of the Geological Society, 2002, 159, 351-378.	2.1	479
7	Carbon-isotope record of the Early Jurassic (Toarcian) Oceanic Anoxic Event from fossil wood and marine carbonate (Lusitanian Basin, Portugal). Earth and Planetary Science Letters, 2007, 253, 455-470.	4.4	441
8	Carbon-isotope stratigraphy recorded by the Cenomanian–Turonian Oceanic Anoxic Event: correlation and implications based on three key localities. Journal of the Geological Society, 2004, 161, 711-719.	2.1	404
9	Evidence for rapid climate change in the Mesozoic–Palaeogene greenhouse world. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2003, 361, 1885-1916.	3.4	400
10	Cretaceous sea-surface temperature evolution: Constraints from TEX86 and planktonic foraminiferal oxygen isotopes. Earth-Science Reviews, 2017, 172, 224-247.	9.1	358
11	New oxygen isotope evidence for long-term Cretaceous climatic change in the Southern Hemisphere. Geology, 1999, 27, 699.	4.4	345
12	Black shales and carbon isotopes in pelagic sediments from the Tethyan Lower Jurassic. Sedimentology, 1986, 33, 87-106.	3.1	290
13	The Cenomanian-Turonian Oceanic Anoxic Event, I. Stratigraphy and distribution of organic carbon-rich beds and the marine l´ ¹³ C excursion. Geological Society Special Publication, 1987, 26, 371-399.	1.3	283
14	Lithium isotope evidence for enhanced weathering during Oceanic Anoxic Event 2. Nature Geoscience, 2013, 6, 668-672.	12.9	282
15	Strontium isotopic variations in Jurassic and Cretaceous seawater. Geochimica Et Cosmochimica Acta, 1994, 58, 3061-3074.	3.9	279
16	High temperatures in the Late Cretaceous Arctic Ocean. Nature, 2004, 432, 888-892.	27.8	277
17	Lower Jurassic epicontinental carbonates and mudstones from England and Wales: chemostratigraphic signals and the early Toarcian anoxic event. Sedimentology, 1997, 44, 687-706.	3.1	264
18	Black shale deposition, atmospheric CO ₂ drawdown, and cooling during the Cenomanianâ€Turonian Oceanic Anoxic Event. Paleoceanography, 2011, 26, .	3.0	248

#	Article	IF	CITATIONS
19	The Cenomanian-Turonian Oceanic Anoxic Event, II. Palaeoceanographic controls on organic-matter production and preservation. Geological Society Special Publication, 1987, 26, 401-420.	1.3	243
20	Carbon-isotope composition of Lower Cretaceous fossil wood: Ocean-atmosphere chemistry and relation to sea-level change. Geology, 1999, 27, 155.	4.4	243
21	The early Toarcian and Cenomanian-Turonian anoxic events in Europe: comparisons and contrasts. Geologische Rundschau: Zeitschrift Fur Allgemeine Geologie, 1985, 74, 505-518.	1.3	237
22	Globally enhanced mercury deposition during the end-Pliensbachian extinction and Toarcian OAE: A link to the Karoo–Ferrar Large Igneous Province. Earth and Planetary Science Letters, 2015, 428, 267-280.	4.4	236
23	Chemostratigraphy versus biostratigraphy: data from around the Cenomanian–Turonian boundary. Journal of the Geological Society, 1993, 150, 29-32.	2.1	216
24	Nitrogen isotope evidence for water mass denitrification during the Early Toarcian (Jurassic) oceanic anoxic event. Paleoceanography, 2001, 16, 593-603.	3.0	213
25	ALPINE, MEDITERRANEAN, AND CENTRAL ATLANTIC MESOZOIC FACIES IN RELATION TO THE EARLY EVOLUTION OF THE TETHYS. , 1974, , 129-160.		200
26	Further evidence for the development of photic-zone euxinic conditions during Mesozoic oceanic anoxic events. Journal of the Geological Society, 2004, 161, 353-364.	2.1	183
27	Mercury evidence for pulsed volcanism during the end-Triassic mass extinction. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7929-7934.	7.1	180
28	Volcanism and vertical tectonics in the Pacific Basin related to global Cretaceous transgressions. Earth and Planetary Science Letters, 1981, 52, 435-449.	4.4	175
29	lodine to calcium ratios in marine carbonate as a paleo-redox proxy during oceanic anoxic events. Geology, 2010, 38, 1107-1110.	4.4	175
30	Strontium isotopes in Early Jurassic seawater. Geochimica Et Cosmochimica Acta, 1994, 58, 1285-1301.	3.9	170
31	Significant increases in global weathering during Oceanic Anoxic Events 1a and 2 indicated by calcium isotopes. Earth and Planetary Science Letters, 2011, 309, 77-88.	4.4	163
32	Warm Middle Jurassic–Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean. Climate of the Past, 2012, 8, 215-226.	3.4	161
33	Stratigraphy, Geochemistry, and Paleoceanography of Organic Carbon-Rich Cretaceous Sequences. , 1990, , 75-119.		154
34	Carbon sequestration in an expanded lake system during the Toarcian oceanic anoxic event. Nature Geoscience, 2017, 10, 129-134.	12.9	151
35	A carbon-isotope perturbation at the Pliensbachian–Toarcian boundary: evidence from the Lias Group, NE England. Geological Magazine, 2010, 147, 181-192.	1.5	147
36	Palaeoenvironmental significance of carbon- and oxygen-isotope stratigraphy of marine Triassic–Jurassic boundary sections in SW Britain. Journal of the Geological Society, 2009, 166, 431-445.	2.1	139

#	Article	IF	CITATIONS
37	Global correlation of Upper Campanian - Maastrichtian successions using carbon-isotope stratigraphy: development of a new Maastrichtian timescale. Newsletters on Stratigraphy, 2012, 45, 25-53.	1.2	139
38	Osmium isotope evidence for two pulses of increased continental weathering linked to Early Jurassic volcanism and climate change. Geology, 2016, 44, 759-762.	4.4	137
39	First record of the Early Toarcian Oceanic Anoxic Event from the Southern Hemisphere, Neuquén Basin, Argentina. Journal of the Geological Society, 2010, 167, 633-636.	2.1	132
40	Evolution of the Toarcian (Early Jurassic) carbon-cycle and global climatic controls on local sedimentary processes (Cardigan Bay Basin, UK). Earth and Planetary Science Letters, 2018, 484, 396-411.	4.4	129
41	Basaltâ€seawater interaction, the Plenus Cold Event, enhanced weathering and geochemical change: deconstructing Oceanic Anoxic Event 2 (Cenomanian–Turonian, Late Cretaceous). Sedimentology, 2017, 64, 16-43.	3.1	128
42	Sulfur isotopes track the global extent and dynamics of euxinia during Cretaceous Oceanic Anoxic Event 2. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18407-18412.	7.1	127
43	A global perturbation to the sulfur cycle during the Toarcian Oceanic Anoxic Event. Earth and Planetary Science Letters, 2011, 312, 484-496.	4.4	122
44	Palaeoceanography of Mesozoic ribbon radiolarites. Earth and Planetary Science Letters, 1982, 60, 351-375.	4.4	120
45	Astronomical calibration of the Jurassic time-scale from cyclostratigraphy in British mudrock formations. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 1999, 357, 1787-1813.	3.4	118
46	Osmium-isotope evidence for volcanism, weathering, and ocean mixing during the early Aptian OAE 1a. Geology, 2012, 40, 583-586.	4.4	117
47	Late inception of a resiliently oxygenated upper ocean. Science, 2018, 361, 174-177.	12.6	117
48	Does large igneous province volcanism always perturb the mercury cycle? Comparing the records of Oceanic Anoxic Event 2 and the end-Cretaceous to other Mesozoic events. Numerische Mathematik, 2018, 318, 799-860.	1.4	110
49	Climate variability and ocean fertility during the Aptian Stage. Climate of the Past, 2015, 11, 383-402.	3.4	109
50	Integrated stratigraphy of the Kimmeridge Clay Formation (Upper Jurassic) based on exposures and boreholes in south Dorset, UK. Geological Magazine, 2001, 138, 511-539.	1.5	108
51	Stepwise extinction of larger foraminifers at the Cenomanian-Turonian boundary: A shallow-water perspective on nutrient fluctuations during Oceanic Anoxic Event 2 (Bonarelli Event). Geology, 2008, 36, 715.	4.4	107
52	Jurassic Manganese Carbonates of Central Europe and the Early Toarcian Anoxic Event. Journal of Geology, 1991, 99, 137-149.	1.4	106
53	Dynamics of a stepped carbon-isotope excursion: Ultra high-resolution study of Early Toarcian environmental change. Earth and Planetary Science Letters, 2012, 319-320, 45-54.	4.4	106
54	Astronomical constraints on the duration of the Early Jurassic Pliensbachian Stage and global climatic fluctuations. Earth and Planetary Science Letters, 2016, 455, 149-165.	4.4	106

#	Article	IF	CITATIONS
55	THE GENESIS OF CONDENSED SEQUENCES IN THE TETHYAN JURASSIC. Lethaia, 1971, 4, 327-352.	1.4	105
56	Carbonâ€isotope records of the Early Jurassic (Toarcian) oceanic anoxic event from the Valdorbia (Umbria–Marche Apennines) and Monte Mangart (Julian Alps) sections: palaeoceanographic and stratigraphic implications. Sedimentology, 2009, 56, 1307-1328.	3.1	103
57	Uranium isotope evidence for two episodes of deoxygenation during Oceanic Anoxic Event 2. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2918-2923.	7.1	100
58	Orbital pacing and secular evolution of the Early Jurassic carbon cycle. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3974-3982.	7.1	95
59	Lithium-isotope evidence for enhanced silicate weathering during OAE 1a (Early Aptian Selli event). Earth and Planetary Science Letters, 2015, 432, 210-222.	4.4	94
60	Nitrate reduction, sulfate reduction, and sedimentary iron isotope evolution during the Cenomanian‶uronian oceanic anoxic event. Paleoceanography, 2007, 22, .	3.0	93
61	Toarcian anoxic event in Europe: An organic geochemical study. Marine and Petroleum Geology, 1989, 6, 136-147.	3.3	90
62	The paradox of drowned carbonate platforms and the origin of Cretaceous Pacific guyots. Nature, 1998, 392, 889-894.	27.8	90
63	Sedimentary Mercury Enrichments as a Marker for Submarine Large Igneous Province Volcanism? Evidence From the Mid enomanian Event and Oceanic Anoxic Event 2 (Late Cretaceous). Geochemistry, Geophysics, Geosystems, 2017, 18, 4253-4275.	2.5	87
64	Multiple negative carbon-isotope excursions during the Carnian Pluvial Episode (Late Triassic). Earth-Science Reviews, 2018, 185, 732-750.	9.1	81
65	Controls on iron-isotope fractionation in organic-rich sediments (Kimmeridge Clay, Upper Jurassic,) Tj ETQq1 1 C).784314 r	gBT/Overlock
66	Explaining the Phanerozoic Ca isotope history of seawater. Geology, 2012, 40, 843-846.	4.4	80
67	Relative sea-level change and carbon isotopes: data from the Upper Jurassic (Oxfordian) of central and Southern Europe. Terra Nova, 1996, 8, 75-85.	2.1	79
68	Upper Cretaceous carbon- and oxygen-isotope stratigraphy of hemipelagic carbonate facies from southern Tibet, China. Journal of the Geological Society, 2006, 163, 375-382.	2.1	79
69	Ancient oceans and continental margins of the Alpineâ€Mediterranean Tethys: deciphering clues from Mesozoic pelagic sediments and ophiolites. Sedimentology, 2009, 56, 149-190.	3.1	79
70	The dawn of CAMP volcanism and its bearing on the end-Triassic carbon cycle disruption. Journal of the Geological Society, 2014, 171, 153-164.	2.1	77
71	Stable isotope study of the cyclic diatomite—Claystones from the tripoli formation, Sicily: A prelude to the Messenian salinity crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 1979, 29, 125-141. 	2.3	74
72	Cyclostratigraphy and the Early Jurassic timescale: Data from the Belemnite Marls, Dorset, southern England. Bulletin of the Geological Society of America, 1999, 111, 1823-1840.	3.3	69

#	Article	IF	CITATIONS
73	Changing ocean circulation and hydrothermal inputs during Ocean Anoxic Event 2 (Cenomanian–Turonian): Evidence from Nd-isotopes in the European shelf sea. Earth and Planetary Science Letters, 2013, 375, 338-348.	4.4	68
74	Basin-scale controls on the molybdenum-isotope composition of seawater during Oceanic Anoxic Event 2 (Late Cretaceous). Geochimica Et Cosmochimica Acta, 2016, 178, 291-306.	3.9	68
75	Biotic and geochemical response to anoxic events: the Aptian pelagic succession of the Gargano Promontory (southern Italy). Geological Magazine, 2001, 138, 277-298.	1.5	67
76	The response of two Tethyan carbonate platforms to the early Toarcian (Jurassic) oceanic anoxic event: environmental change and differential subsidence. Sedimentology, 2008, 55, 1011-1028.	3.1	67
77	Origin of rhythmic Albian black shales (Piobbico core, central Italy): Calcareous nannofossil quantitative and statistical analyses and paleoceanographic reconstructions. Paleoceanography, 2009, 24, .	3.0	64
78	Carbon- and oxygen-isotope records of mid-Cretaceous Tethyan pelagic sequences from the Umbria – Marche and Belluno Basins (Italy). Newsletters on Stratigraphy, 2015, 48, 299-323.	1.2	64
79	The Cenomanian/Turonian anoxic event in Europe: an organic geochemical study. Marine and Petroleum Geology, 1990, 7, 75-89.	3.3	62
80	Abrupt planktic foraminiferal turnover across the Niveau Kilian at Col de Pré-Guittard (Vocontian) Tj ETQq0 0 C Stratigraphy, 2012, 45, 55-74.) rgBT /Ove 1.2	erlock 10 Tf 5 60
81	Upper ocean oxygenation dynamics from I/Ca ratios during the Cenomanianâ€Turonian OAE 2. Paleoceanography, 2015, 30, 510-526.	3.0	60
82	Global and local forcing of Early Toarcian seawater chemistry: A comparative study of different paleoceanographic settings (Paris and Lusitanian basins). Paleoceanography, 2009, 24, .	3.0	59
83	Molybdenumâ€isotope chemostratigraphy and paleoceanography of the Toarcian Oceanic Anoxic Event (Early Jurassic). Paleoceanography, 2017, 32, 813-829.	3.0	59
84	Basins and swells and the evolution of an epeiric sea. Journal of the Geological Society, 1975, 131, 373-388.	2.1	58
85	Organic-carbon deposition in the Cretaceous of the Ionian Basin, NW Greece: the Paquier Event (OAE) Tj ETQq1	1 0.78431 1.5	4 rgBT /Over
86	Base of the Toarcian Stage of the Lower Jurassic defined by the Global Boundary Stratotype Section and Point (GSSP) at the Peniche section (Portugal). Episodes, 2016, 39, 460-481.	1.2	57
87	Astronomical calibration and global correlation of the Santonian (Cretaceous) based on the marine carbon isotope record. Paleoceanography, 2016, 31, 847-865.	3.0	56
88	Isotopic evidence for changes in the zinc cycle during Oceanic Anoxic Event 2 (Late Cretaceous). Geology, 2018, 46, 463-466.	4.4	56
89	Geological evidence for intra-Jurassic faulting in the Wessex Basin and its margins. Journal of the Geological Society, 1991, 148, 245-260.	2.1	55
90	The Global Boundary Stratotype Section and Point (GSSP) for the base of the Albian Stage, of the Cretaceous, the Col de Pré-Guittard section, Arnayon, Drôme, France. Episodes, 2017, 40, 177-188.	1.2	55

#	Article	IF	CITATIONS
91	The Toarcian Oceanic Anoxic Event (Early Jurassic) in the Neuquén Basin, Argentina: A Reassessment of Age and Carbon Isotope Stratigraphy. Journal of Geology, 2016, 124, 171-193.	1.4	54
92	New age constraints on Aptian evaporites and carbonates from the South Atlantic: Implications for Oceanic Anoxic Event 1a. Geology, 2017, 45, 543-546.	4.4	52
93	Thallium isotopes in early diagenetic pyrite – A paleoredox proxy?. Geochimica Et Cosmochimica Acta, 2011, 75, 6690-6704.	3.9	51
94	Regular and irregular climatic cycles and the Belemnite Marls (Pliensbachian, Lower Jurassic, Wessex) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
95	Quartz silt in mudrocks as a key to sequence stratigraphy (Kimmeridge Clay Formation, Late Jurassic,) Tj ETQq1	1 0,78431 2.1	4 rgBT /Overle
96	Early Pliensbachian (Early Jurassic) C-isotope perturbation and the diffusion of the Lithiotis Fauna: Insights from the western Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 410, 255-263.	2.3	50
97	Environmental consequences of Ontong Java Plateau and Kerguelen Plateau volcanism. Special Paper of the Geological Society of America, 0, , 271-303.	0.5	49
98	On the onset of Central Atlantic Magmatic Province (CAMP) volcanism and environmental and carbon-cycle change at the Triassic–Jurassic transition (Neuquén Basin, Argentina). Earth-Science Reviews, 2020, 208, 103229.	9.1	49
99	Integrated stratigraphy across the Aptian/Albian boundary at Col de Pré-Guittard (southeast France): A candidate Global Boundary Stratotype Section. Cretaceous Research, 2014, 51, 248-259.	1.4	48
100	Carbon-Isotope Stratigraphy and Paleoceanographic Significance of the Lower Cretaceous Shallow-Water Carbonates of Resolution Guyot, Mid-Pacific Mountains. , 0, , .		48
101	Patterns of local and global redox variability during the Cenomanian–Turonian Boundary Event (Oceanic Anoxic Event 2) recorded in carbonates and shales from central Italy. Sedimentology, 2017, 64, 168-185.	3.1	45
102	A Southern Hemisphere record of global traceâ€metal drawdown and orbital modulation of organicâ€matter burial across the Cenomanian–Turonian boundary (Ocean Drilling Program Site 1138,) Tj ETQ)գ ՖԸ Օ rgե	3T 49 verlock I
103	Transient cooling episodes during Cretaceous Oceanic Anoxic Events with special reference to OAE 1a (Early Aptian). Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170073.	3.4	43
104	Long-term Late Cretaceous oxygen- and carbon-isotope trends and planktonic foraminiferal turnover: A new record from the southern midlatitudes. Bulletin of the Geological Society of America, 2016, 128, 1725-1735.	3.3	42
105	British Lower Jurassic Sequence Stratigraphy. , 1999, , .		40
106	Albian high-resolution biostratigraphy and isotope stratigraphy: The Coppa della Nuvola pelagic succession of the Gargano Promontory (Southern Italy). Eclogae Geologicae Helveticae, 2004, 97, 77-92.	0.6	39
107	Late Cretaceous Temperature Evolution of the Southern High Latitudes: A TEX ₈₆ Perspective. Paleoceanography and Paleoclimatology, 2019, 34, 436-454.	2.9	39
108	Magnetostratigraphy of the Toarcian Stage (Lower Jurassic) of the Llanbedr (Mochras Farm) Borehole, Wales: basis for a global standard and implications for volcanic forcing of palaeoenvironmental change. Journal of the Geological Society, 2018, 175, 594-604.	2.1	38

Hugh C Jenkyns

#	Article	IF	CITATIONS
109	Carbon isotope signatures of pedogenic carbonates from SE China: rapid atmospheric <i>p</i> CO ₂ changes during middle–late Early Cretaceous time. Geological Magazine, 2014, 151, 830-849.	1.5	37
110	A global event with a regional character: the Early Toarcian Oceanic Anoxic Event in the Pindos Ocean (northern Peloponnese, Greece). Geological Magazine, 2011, 148, 619-631.	1.5	36
111	Evaluating the use of amber in palaeoatmospheric reconstructions: The carbon-isotope variability of modern and Cretaceous conifer resins. Geochimica Et Cosmochimica Acta, 2017, 199, 351-369.	3.9	34
112	Tethys: past and present. Proceedings of the Geologists Association, 1980, 91, 107-118.	1.1	33
113	The lower Lias Group of the Hebrides Basin. Scottish Journal of Geology, 1998, 34, 23-60.	0.1	33
114	Determining the style and provenance of magmatic activity during the Early Aptian Oceanic Anoxic Event (OAE 1a). Global and Planetary Change, 2021, 200, 103461.	3.5	33
115	Pelagic "Oolites" from the Tethyan Jurassic. Journal of Geology, 1972, 80, 21-33.	1.4	32
116	An organic geochemical profile of the Toarcian anoxic event in northern Italy. Chemical Geology, 1994, 111, 17-33.	3.3	32
117	Petrography and high-resolution geochemical records of Lower Jurassic manganese-rich deposits from Monte Mangart, Julian Alps. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299, 97-109.	2.3	32
118	Planktonic foraminiferal biostratigraphy and assemblage composition across the Cenomanian–Turonian boundary interval at Clot Chevalier (Vocontian Basin, SE France). Cretaceous Research, 2016, 59, 69-97.	1.4	32
119	Southern Hemisphere sea-surface temperatures during the Cenomanian–Turonian: Implications for the termination of Oceanic Anoxic Event 2. Geology, 2019, 47, 131-134.	4.4	32
120	Carbon-isotope variability of Triassic amber, as compared with wood and leaves (Southern Alps, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 302, 187-193.	2.3	31
121	Carbon-isotope record and palaeoenvironmental changes during the early Toarcian oceanic anoxic event in shallow-marine carbonates of the Adriatic Carbonate Platform in Croatia. Geological Magazine, 2013, 150, 1085-1102.	1.5	31
122	Early Jurassic North Atlantic seaâ€surface temperatures from <scp>TEX</scp> ₈₆ palaeothermometry. Sedimentology, 2017, 64, 215-230.	3.1	31
123	High-resolution records of Oceanic Anoxic Event 2: Insights into the timing, duration and extent of environmental perturbations from the palaeo-South Pacific Ocean. Earth and Planetary Science Letters, 2019, 518, 172-182.	4.4	31
124	LIMONITIC CONCRETIONS FROM THE EUROPEAN JURASSIC, WITH PARTICULAR REFERENCE TO THE "SNUFF-BOXES" OF SOUTHERN ENGLAND. Sedimentology, 1972, 18, 79-103.	3.1	30
125	Cyclostratigraphy, stratigraphic gaps and the duration of the Hettangian Stage (Jurassic): insights from the Blue Lias Formation of southern Britain. Geological Magazine, 2019, 156, 1469-1509.	1.5	29
	The age, origin and tectonic significance of Mesozoic sediment-filled fissures in the Mendin Hills (SW) Ti FTOO	0 0 rgBT /	Overlock 101

The age, origin and tectonic significance of Mesozoic sediment-filled fissures in the Mendip Hills (SW) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 126 141, 471-504.

#	Article	IF	CITATIONS
127	Orbital pacing of the Early Jurassic carbon cycle, blackâ€shale formation and seabed methane seepage. Sedimentology, 2017, 64, 127-149.	3.1	28
128	High-resolution bio- and chemostratigraphy of an expanded record of Oceanic Anoxic Event 2 (Late) Tj ETQq0 0 Newsletters on Stratigraphy, 2019, 52, 97-129.	0 rgBT /O 1.2	verlock 10 Tf 5 28
129	First evidence for the Cenomanian–Turonian oceanic anoxic event (OAE2, â€~Bonarelli' event) from the Ionian Zone, western continental Greece. International Journal of Earth Sciences, 2007, 96, 343-352.	1.8	27
130	Chemostratigraphy (CaCO3, TOC, δ13Corg) of Sinemurian (Lower Jurassic) black shales from the Wessex Basin, Dorset and palaeoenvironmental implications. Newsletters on Stratigraphy, 2013, 46, 1-21.	1.2	27
131	Speculations on the genesis of crinoidal limestones in the Tethyan Jurassic. Geologische Rundschau: Zeitschrift Fur Allgemeine Geologie, 1971, 60, 471-488.	1.3	26
132	The Toarcian Oceanic Anoxic Event in the Ionian Zone, Greece. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 393, 135-145.	2.3	26
133	Comment and Reply on â€~Age and origin of Ballantrae ophiolite and its significance to the Caledonian orogeny and the Ordovician time scale'. Geology, 1982, 10, 331.	4.4	25
134	Cenomanian–Turonian carbonate and organic-carbon isotope records, biostratigraphy and provenance of a key section in NE Sicily, Italy: Palaeoceanographic and palaeogeographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 265, 59-77.	2.3	25
135	A climatic control on reorganization of ocean circulation during the mid-Cenomanian event and Cenomanian-Turonian oceanic anoxic event (OAE 2): Nd isotope evidence. Geology, 2016, 44, 151-154.	4.4	25
136	A Reâ€evaluation of the Plenus Cold Event, and the Links Between CO ₂ , Temperature, and Seawater Chemistry During OAE 2. Paleoceanography and Paleoclimatology, 2020, 35, e2019PA003631.	2.9	25
137	A carbonate island barrier from the Great Oolite (Middle Jurassic) of central England. Sedimentology, 1975, 22, 125-135.	3.1	24
138	Carbon-isotope anomalies and demise of carbonate platforms in the Sinemurian (Early Jurassic) of the Tethyan region: evidence from the Southern Alps (Northern Italy). Geological Magazine, 2017, 154, 625-650.	1.5	23
139	THE EARLY JURASSIC OIL SHALES IN THE QIANGTANG BASIN, NORTHERN TIBET: BIOMARKERS AND TOARCIAN OCEANIC ANOXIC EVENTS. Oil Shale, 2013, 30, 441.	1.0	22
140	Organically bound iodine as a bottom-water redox proxy: Preliminary validation and application. Chemical Geology, 2017, 457, 95-106.	3.3	22
141	Combined sea-level and climate controls on limestone formation, hiatuses and ammonite preservation in the Blue Lias Formation, South Britain (uppermost Triassic – Lower Jurassic). Geological Magazine, 2018, 155, 1117-1149.	1.5	21
142	High-resolution carbonate isotopic study of the Mural Formation (Cerro Pimas section), Sonora, MA©xico: Implications for early Albian oceanic anoxic events. Journal of South American Earth Sciences, 2018, 82, 329-345.	1.4	21
143	Zinc- and cadmium-isotope evidence for redox-driven perturbations to global micronutrient cycles during Oceanic Anoxic Event 2 (Late Cretaceous). Earth and Planetary Science Letters, 2020, 546, 116427.	4.4	21
144	Ophiolites in ocean–continent transitions: From the Steinmann Trinity to sea-floor spreading. Comptes Rendus - Geoscience, 2009, 341, 363-381.	1.2	18

1

#	Article	IF	CITATIONS
145	Controls on the Cd-isotope composition of Upper Cretaceous (Cenomanian–Turonian) organic-rich mudrocks from south Texas (Eagle Ford Group). Geochimica Et Cosmochimica Acta, 2020, 287, 251-262.	3.9	17
146	No effect of thermal maturity on the Mo, U, Cd, and Zn isotope compositions of Lower Jurassic organic-rich sediments. Geology, 2022, 50, 598-602.	4.4	16
147	New age constraints on the Lower Jurassic Pliensbachian–Toarcian Boundary at Chacay Melehue (Neuquén Basin, Argentina). Scientific Reports, 2022, 12, 4975.	3.3	16
148	Fossil Manganese Nodules from Sicily. Nature, 1967, 216, 673-674.	27.8	14
149	A Liassic palaeofault from Dorset. Geological Magazine, 1977, 114, 47-52.	1.5	14
150	The Toarcian black shale event in northern Italy. Organic Geochemistry, 1988, 13, 823-832.	1.8	12
151	Population response during an Oceanic Anoxic Event: The case of Posidonotis (Bivalvia) from the Lower Jurassic of the Neuquén Basin, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 525, 57-67.	2.3	12
152	Erratum to Abrupt planktic foraminiferal turnover across the Niveau Kilian at Col de Pré-Guittard (Vocontian Basin, southeast France): new criteria for defining the Aptian/Albian boundary. Newsletters on Stratigraphy, 2013, 46, 93-93.	1.2	11
153	Preliminary nannofossil and geochemical data from Jurassic black shales from the Qiangtang Basin, northern Tibet. Journal of Asian Earth Sciences, 2016, 115, 257-267.	2.3	11
154	Molecular and petrographical evidence for lacustrine environmental and biotic change in the palaeo-Sichuan mega-lake (China) during the Toarcian Oceanic Anoxic Event. Geological Society Special Publication, 2021, 514, 335-357.	1.3	9
155	Early Jurassic long-term oceanic sulfur-cycle perturbations in the Tibetan Himalaya. Earth and Planetary Science Letters, 2022, 578, 117261.	4.4	9
156	Reply to comment on "Carbon-isotope record of the Early Jurassic (Toarcian) oceanic anoxic event from fossil wood and marine carbonate (Lusitanian Basin, Portugal)― Earth and Planetary Science Letters, 2007, 259, 640-641.	4.4	8
157	Geochemical evidence from the Kioto Carbonate Platform (Tibet) reveals enhanced terrigenous input and deoxygenation during the early Toarcian. Global and Planetary Change, 2022, 215, 103887.	3.5	7
158	Chapter 4 Fossil Nodules. Elsevier Oceanography Series, 1977, , 87-108.	0.1	6
159	New Constraints on Global Geochemical Cycling During Oceanic Anoxic Event 2 (Late Cretaceous) From a 6â€Millionâ€year Long Molybdenumâ€Isotope Record. Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009246.	2.5	5
160	The chemostratigraphy and environmental significance of the Marlstone and Junction Bed (Beacon) Tj ETQqO O O I	gBT /Ovei	lgck 10 Tf 5
161	The lower Lias Group of the Hebrides Basin Published in Scottish Journal of Geology, Vol. 34(1), 1998, pp. 23–60. Scottish Journal of Geology, 1999, 35, 85-88.	0.1	4

Identifying vital effects in <i&gt;Halimeda&lt;/i&gt; algae with Ca isotopes.
Biogeosciences, 2014, 11, 7207-7217.

#	Article	IF	CITATIONS
163	ITALIAN GEOLOGY AND CLIMATE CHANGE IN THE DEEP PAST. Istituto Lombardo - Accademia Di Scienze E Lettere - Rendiconti Di Scienze, 2020, , .	0.0	0
164	Next time you are asked to review a manuscript‥. GSA Today, 2007, 17, 17.	2.0	0