Adam Higginson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3701652/publications.pdf

Version: 2024-02-01

		1163117	1058476	
15	441	8	14	
papers	citations	h-index	g-index	
1.5	1.5	15	CEC	
15	15	15	656	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Influence of spatial-intensity contrast in ultraintense laser–plasma interactions. Scientific Reports, 2022, 12, 1910.	3.3	3
2	Transport of an intense proton beam from a cone-structured target through plastic foam with unique proton source modeling. Physical Review E, 2022, 105, . Electron acceleration at oblique angles via stimulated Raman scattering at laser irradiance.	2.1	1
3	<pre><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>></mml:mo><mml:msup><mr width="0.16em"></mr><mml:mi mathvariant="normal">W</mml:mi><mml:mspace width="0.16em"></mml:mspace><mml:msup><mml:mrow><mml:mo>â^²</mml:mo><mml:m< pre=""></mml:m<></mml:mrow></mml:msup></mml:msup></mml:mrow></mml:math></pre>	2.1	2
4	mathvariant. Physical Review E, 2021, 103, 033203. Influence of target-rear-side short scale length density gradients on laser-driven proton acceleration. Plasma Physics and Controlled Fusion, 2021, 63, 114001.	2.1	3
5	Wake dynamics of air filaments generated by high-energy picosecond laser pulses at 1 kHz repetition rate. Optics Letters, 2021, 46, 5449.	3.3	12
6	Development of a Platform at the Matter in Extreme Conditions End Station for Characterization of Matter Heated by Intense Laser-Accelerated Protons. IEEE Transactions on Plasma Science, 2020, 48, 2751-2758.	1.3	4
7	Self-Referencing Spectral Interferometric Probing of the Onset Time of Relativistic Transparency in Intense Laser-Foil Interactions. Physical Review Applied, 2020, 14, .	3.8	4
8	High order mode structure of intense light fields generated via a laser-driven relativistic plasma aperture. Scientific Reports, 2020, 10, 105.	3.3	14
9	Enhanced laser intensity and ion acceleration due to self-focusing in relativistically transparent ultrathin targets. Physical Review Research, 2020, 2, .	3.6	10
10	Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme. Nature Communications, 2018, 9, 724.	12.8	307
11	Dual Ion Species Plasma Expansion from Isotopically Layered Cryogenic Targets. Physical Review Letters, 2018, 120, 204801.	7.8	11
12	Experimental demonstration of a compact epithermal neutron source based on a high power laser. Applied Physics Letters, 2017, 111, .	3.3	39
13	Transverse expansion of the electron sheath during laser acceleration of protons. Physics of Plasmas, 2017, 24, 123109.	1.9	0
14	High resolution Thomson Parabola Spectrometer for full spectral capture of multi-species ion beams. Review of Scientific Instruments, 2016, 87, 083304.	1.3	11
15	Evaluating laser-driven Bremsstrahlung radiation sources for imaging and analysis of nuclear waste packages. Journal of Hazardous Materials, 2016, 318, 694-701.	12.4	20