
Bodo D Wilts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3701600/publications.pdf Version: 2024-02-01

<u>Βορο D Wilts</u>

#	Article	IF	CITATIONS
1	<i>Pachyrhynchus</i> Weevils Use 3D Photonic Crystals with Varying Degrees of Order to Create Diverse and Brilliant Displays. Small, 2022, 18, e2200592.	10.0	8
2	Distributed Bragg reflectors from colloidal trilayer flake solutions. APL Photonics, 2021, 6, .	5.7	4
3	Cyan-Emitting Cu(I) Complexes and Their Luminescent Metallopolymers. Molecules, 2021, 26, 2567.	3.8	5
4	Light Polarization by Biological Nanocoatings. ACS Applied Materials & Interfaces, 2021, 13, 23481-23488.	8.0	2
5	Photonic Particles Made by the Confined Selfâ€Assembly of a Supramolecular Combâ€Like Block Copolymer. Macromolecular Rapid Communications, 2021, , 2100522.	3.9	11
6	Enhancing the Refractive Index of Polymers with a Plantâ€Based Pigment. Small, 2021, 17, e2103061.	10.0	13
7	Insect Antiadhesive Surfaces Using Electrosprayed Wrinkled Ethyl Cellulose Particles. ACS Applied Materials & Interfaces, 2021, 13, 9232-9238.	8.0	5
8	Heterolytic Bond Cleavage in a Scissile Triarylmethane Mechanophore. Journal of the American Chemical Society, 2021, 143, 18859-18863.	13.7	21
9	Cortex Thickness Is Key for the Colors of Iridescent Starling Feather Barbules With a Single, Organized Melanosome Layer. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	6
10	Polydopamine Nanoparticle Doped Nanofluid for Solar Thermal Energy Collector Efficiency Increase. Advanced Sustainable Systems, 2020, 4, 1900101.	5.3	5
11	Fruit Coloration: Attractive, Fatty Blue Colours?. Current Biology, 2020, 30, R1078-R1080.	3.9	0
12	Carbonâ€Assisted Stable Silver Nanostructures. Advanced Materials Interfaces, 2020, 7, 2001227.	3.7	9
13	Bio-inspired optics: general discussion. Faraday Discussions, 2020, 223, 183-194.	3.2	0
14	Structural Diversity with Varying Disorder Enables the Multicolored Display in the Longhorn Beetle Sulawesiella rafaelae. IScience, 2020, 23, 101339.	4.1	12
15	Hyperbolic Optical Metamaterials from Shearâ€Aligned Block Copolymer Cylinder Arrays. Advanced Photonics Research, 2020, 1, 2000037.	3.6	8
16	Evolutionary algorithms converge towards evolved biological photonic structures. Scientific Reports, 2020, 10, 12024.	3.3	21
17	Soft Photonic Fibers for Colorimetric Solvent Vapor Sensing. Advanced Optical Materials, 2020, 8, 2000165.	7.3	25
18	Strong Circular Dichroism in Single Gyroid Optical Metamaterials. Advanced Optical Materials, 2020, 8, 1902131.	7.3	32

#	Article	IF	CITATIONS
19	Polymerizationâ€Induced Wrinkled Surfaces with Controlled Topography as Slippery Surfaces for Colorado Potato Beetles. Advanced Materials Interfaces, 2020, 7, 2000129.	3.7	17
20	Designing refractive index fluids using the Kramers–Kronig relations. Faraday Discussions, 2020, 223, 136-144.	3.2	19
21	Complex photonic response reveals three-dimensional self-organization of structural coloured bacterial colonies. Journal of the Royal Society Interface, 2020, 17, 20200196.	3.4	16
22	What's in a band? The function of the color and banding pattern of the Banded Swallowtail. Ecology and Evolution, 2020, 10, 2021-2029.	1.9	6
23	Ultra-dense, curved, grating optics determines peacock spider coloration. Nanoscale Advances, 2020, 2, 1122-1127.	4.6	15
24	Orientation-Dependent Reflection of Structurally Coloured Butterflies. Biomimetics, 2020, 5, 5.	3.3	8
25	Measuring the refractive index dispersion of (un)pigmented biological tissues by Jamin-Lebedeff interference microscopy. AIP Advances, 2019, 9, 085107.	1.3	1
26	A Dynamic Optical Signal in a Nocturnal Moth. Current Biology, 2019, 29, 2919-2925.e2.	3.9	16
27	Humidity-dependent colour change in the green forester moth, <i>Adscita statices</i> . Biology Letters, 2019, 15, 20190516.	2.3	7
28	Pterin-pigmented nanospheres create the colours of the polymorphic damselfly <i>Ischnura elegans</i> . Journal of the Royal Society Interface, 2019, 16, 20180785.	3.4	31
29	Reflections on iridescent neck and breast feathers of the peacock, <i>Pavo cristatus</i> . Interface Focus, 2019, 9, 20180043.	3.0	23
30	Thin-film structural coloration from simple fused scales in moths. Interface Focus, 2019, 9, 20180044.	3.0	16
31	<i>Living light</i> : optics, ecology and design principles of natural photonic structures. Interface Focus, 2019, 9, 20180071.	3.0	3
32	When Black and White make Green: the Surprising Interplay of Structure and Pigments. Chimia, 2019, 73, 47.	0.6	4
33	Nature's functional nanomaterials: Growth or self-assembly?. MRS Bulletin, 2019, 44, 106-112.	3.5	19
34	Diffusive structural colour in <i>Hoplia argentea</i> . Journal of Experimental Biology, 2019, 222, .	1.7	5
35	Determining the complex Jones matrix elements of a chiral 3D optical metamaterial. APL Photonics, 2019, 4, .	5.7	9
36	Metasurfaces Atop Metamaterials: Surface Morphology Induces Linear Dichroism in Gyroid Optical Metamaterials. Advanced Materials, 2019, 31, 1803478.	21.0	24

#	Article	IF	CITATIONS
37	Magnificent magpie colours by feathers with layers of hollow melanosomes. Journal of Experimental Biology, 2018, 221, .	1.7	13
38	Genetic manipulation of structural color in bacterial colonies. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2652-2657.	7.1	40
39	It's Not a Bug, It's a Feature: Functional Materials in Insects. Advanced Materials, 2018, 30, e1705322.	21.0	120
40	Polymer-Templated LiFePO ₄ /C Nanonetworks as High-Performance Cathode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 1646-1653.	8.0	71
41	Evolutionaryâ€Optimized Photonic Network Structure in White Beetle Wing Scales. Advanced Materials, 2018, 30, e1702057.	21.0	95
42	Linear and Circular Dichroism in Gyroid Optical Metamaterials. , 2018, , .		0
43	Controlling Selfâ€Assembly in Gyroid Terpolymer Films By Solvent Vapor Annealing. Small, 2018, 14, e1802401.	10.0	21
44	A Literal Elytral Rainbow: Tunable Structural Colors Using Single Diamond Biophotonic Crystals in <i>Pachyrrhynchus congestus</i> Weevils. Small, 2018, 14, e1802328.	10.0	21
45	Ultrastructure and optics of the prismâ€like petal epidermal cells of <i>Eschscholzia californica</i> (California poppy). New Phytologist, 2018, 219, 1124-1133.	7.3	28
46	Patterning of perovskite–polymer films by wrinkling instabilities. Soft Matter, 2017, 13, 1654-1659.	2.7	12
47	Invited Article: Chiral optics of helicoidal cellulose nanocrystal films. APL Photonics, 2017, 2, .	5.7	39
48	Butterfly gyroid nanostructures as a time-frozen glimpse of intracellular membrane development. Science Advances, 2017, 3, e1603119.	10.3	109
49	Circularly polarized reflection from the scarab beetle Chalcothea smaragdina : light scattering by a dual photonic structure. Interface Focus, 2017, 7, 20160129.	3.0	19
50	Emergence and function of complex form in self-assembly and biological cells. Interface Focus, 2017, 7, 20170035.	3.0	2
51	Mesoporous Titania Microspheres with Highly Tunable Pores as an Anode Material for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 22388-22397.	8.0	47
52	Formation of Synthetic Nanopores with Diameters from 20-50 nm by Laser-Assisted Dielectric Breakdown. Biophysical Journal, 2017, 112, 25a.	0.5	0
53	Nanodropletâ€Containing Polymers for Efficient Lowâ€Power Light Upconversion. Advanced Materials, 2017, 29, 1702992.	21.0	62
54	Structural coloured feathers of mallards act by simple multilayer photonics. Journal of the Royal Society Interface, 2017, 14, 20170407.	3.4	24

#	Article	IF	CITATIONS
55	Optical Imaging of Large Gyroid Grains in Block Copolymer Templates by Confined Crystallization. Macromolecules, 2017, 50, 6255-6262.	4.8	29
56	Spectrally resolved surface plasmon resonance dispersion using half-ball optics. Applied Physics Letters, 2017, 111, 201102.	3.3	3
57	Structural Color in Marine Algae. Advanced Optical Materials, 2017, 5, 1600646.	7.3	32
58	Extreme Refractive Index Wing Scale Beads Containing Dense Pterin Pigments Cause the Bright Colors of Pierid Butterflies. Advanced Optical Materials, 2017, 5, 1600879.	7.3	64
59	Longwing (Heliconius) butterflies combine a restricted set of pigmentary and structural coloration mechanisms. BMC Evolutionary Biology, 2017, 17, 226.	3.2	27
60	Gyroid Optical Metamaterials: Calculating the Effective Permittivity of Multidomain Samples. ACS Photonics, 2016, 3, 1888-1896.	6.6	38
61	Splendid coloration of the peacock spider Maratus splendens. Journal of the Royal Society Interface, 2016, 13, 20160437.	3.4	25
62	Unique wing scale photonics of male Rajah Brooke's birdwing butterflies. Frontiers in Zoology, 2016, 13, 36.	2.0	16
63	Enhanced Efficiency and Stability of Perovskite Solar Cells Through Ndâ€Doping of Mesostructured TiO ₂ . Advanced Energy Materials, 2016, 6, 1501868.	19.5	157
64	Structural colour in Chondrus crispus. Scientific Reports, 2015, 5, 11645.	3.3	27
65	Swelling and Softening of the Cowpea Chlorotic Mottle Virus in Response to pH Shifts. Biophysical Journal, 2015, 108, 2541-2549.	0.5	40
66	High refractive index of melanin in shiny occipital feathers of a bird of paradise. Light: Science and Applications, 2015, 4, e243-e243.	16.6	88
67	Spectrally tuned structural and pigmentary coloration of birdwing butterfly wing scales. Journal of the Royal Society Interface, 2015, 12, 20150717.	3.4	45
68	Optical Properties of Gyroid Structured Materials: From Photonic Crystals to Metamaterials. Advanced Optical Materials, 2015, 3, 12-32.	7.3	213
69	Natural Helicoidal Structures: Morphology, Self-assembly and Optical Properties. Materials Today: Proceedings, 2014, 1, 177-185.	1.8	100
70	Colouration principles of nymphaline butterflies - thin films, melanin, ommochromes and wing scale stacking. Journal of Experimental Biology, 2014, 217, 2171-80.	1.7	85
71	Iridescent flowers? Contribution of surface structures to optical signaling. New Phytologist, 2014, 203, 667-673.	7.3	52
72	Absence of Circular Polarisation in Reflections of Butterfly Wing Scales with Chiral Gyroid Structure. Materials Today: Proceedings, 2014, 1, 193-208.	1.8	59

#	Article	IF	CITATIONS
73	Oil droplets of bird eyes: microlenses acting as spectral filters. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130041.	4.0	49
74	Pigmentary and photonic coloration mechanisms reveal taxonomic relationships of the Cattlehearts (Lepidoptera: Papilionidae: Parides). BMC Evolutionary Biology, 2014, 14, 160.	3.2	32
75	The colouration toolkit of the Pipevine Swallowtail butterfly, Battus philenor: thin films, papiliochromes, and melanin. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2014, 200, 547-561.	1.6	21
76	Sparkling feather reflections of a bird-of-paradise explained by finite-difference time-domain modeling. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4363-4368.	7.1	98
77	Gold nanoparticles explore cells: Cellular uptake and their use as intracellular probes. Methods, 2014, 68, 354-363.	3.8	62
78	Spectral tuning of Amazon parrot feather coloration by psittacofulvin pigments and spongy structures. Journal of Experimental Biology, 2013, 216, 4358-64.	1.7	38
79	The Japanese jewel beetle: a painter's challenge. Bioinspiration and Biomimetics, 2013, 8, 045002.	2.9	32
80	Shiny wing scales cause spec(tac)ular camouflage of the angled sunbeam butterfly, <i>Curetis acuta</i> . Biological Journal of the Linnean Society, 2013, 109, 279-289.	1.6	26
81	Quantifying the refractive index dispersion of a pigmented biological tissue using Jamin–Lebedeff interference microscopy. Light: Science and Applications, 2013, 2, e100-e100.	16.6	50
82	<i>Shine and Hide:</i> Biological Photonic Crystals on the Wings of Weevils. Materials Research Society Symposia Proceedings, 2013, 1504, 1.	0.1	4
83	Papiliochrome II pigment reduces the angle dependency of structural wing colouration in <i>nireus</i> group papilionids. Journal of Experimental Biology, 2012, 215, 796-805.	1.7	45
84	Hemispherical Brillouin zone imaging of a diamond-type biological photonic crystal. Journal of the Royal Society Interface, 2012, 9, 1609-1614.	3.4	54
85	<i>Brilliant camouflage</i> : photonic crystals in the diamond weevil, <i>Entimus imperialis</i> . Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2524-2530.	2.6	80
86	Variable multilayer reflection together with long-pass filtering pigment determines the wing coloration of papilionid butterflies of the nireus group. Optics Express, 2012, 20, 8877.	3.4	43
87	Glass scales on the wing of the swordtail butterfly <i>Graphium sarpedon</i> act as thin film polarizing reflectors. Journal of Experimental Biology, 2012, 215, 657-662.	1.7	34
88	Iridescence and spectral filtering of the gyroid-type photonic crystals in <i>Parides sesostris</i> wing scales. Interface Focus, 2012, 2, 681-687.	3.0	77
89	Sexual Dichromatism of the Damselfly Calopteryx japonica Caused by a Melanin-Chitin Multilayer in the Male Wing Veins. PLoS ONE, 2012, 7, e49743.	2.5	90
90	Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy. Optics Express, 2011, 19, 24061.	3.4	187

#	Article	IF	CITATIONS
91	Spectral reflectance properties of iridescent pierid butterfly wings. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2011, 197, 693-702.	1.6	38
92	Spatial reflection patterns of iridescent wings of male pierid butterflies: curved scales reflect at a wider angle than flat scales. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2011, 197, 987-997.	1.6	25
93	Polarized iridescence of the multilayered elytra of the Japanese jewel beetle, <i>Chrysochroa fulgidissima</i> . Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 709-723.	4.0	133
94	Kingfisher feathers – colouration by pigments, spongy nanostructures and thin films. Journal of Experimental Biology, 2011, 214, 3960-3967.	1.7	77
95	Swelling and Softening of the CCMV Plant Virus Capsid in Response toÂpH Shifts. Biophysical Journal, 2010, 98, 656a.	0.5	4
96	Imaging scatterometry and microspectrophotometry of lycaenid butterfly wing scales with perforated multilayers. Journal of the Royal Society Interface, 2009, 6, S185-92.	3.4	85
97	Are insect displays tuned to insect vision?. Frontiers in Physiology, 0, 4, .	2.8	0