Yong-Jun Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3701393/publications.pdf

Version: 2024-02-01

		236925	345221
81	1,665	25	36
papers	citations	h-index	g-index
82	82	82	1420
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Effects of boiling, ultra-high temperature and high hydrostatic pressure on free amino acids, flavor characteristics and sensory profiles in Chinese rice wine. Food Chemistry, 2019, 275, 407-416.	8.2	91
2	Effect of Extracellular Vesicles Derived From Lactobacillus plantarum Q7 on Gut Microbiota and Ulcerative Colitis in Mice. Frontiers in Immunology, 2021, 12, 777147.	4.8	70
3	Cholesterol-lowering potentials of <i>Lactobacillus < /i>strain overexpression of bile salt hydrolase on high cholesterol diet-induced hypercholesterolemic mice. Food and Function, 2019, 10, 1684-1695.</i>	4.6	67
4	Genomic and phenotypic analyses of exopolysaccharide biosynthesis in Streptococcus thermophilus S-3. Journal of Dairy Science, 2019, 102, 4925-4934.	3.4	60
5	Lactic Acid Bacteria With Antioxidant Activities Alleviating Oxidized Oil Induced Hepatic Injury in Mice. Frontiers in Microbiology, 2018, 9, 2684.	3.5	58
6	<i>Lactobacillus plantarum</i> AR501 Alleviates the Oxidative Stress of Dâ€Galactoseâ€Induced Aging Mice Liver by Upregulation of Nrf2â€Mediated Antioxidant Enzyme Expression. Journal of Food Science, 2018, 83, 1990-1998.	3.1	58
7	Effects of tamarind seed polysaccharide on gelatinization, rheological, and structural properties of corn starch with different amylose/amylopectin ratios. Food Hydrocolloids, 2020, 105, 105854.	10.7	53
8	Improvement of flavor profiles in Chinese rice wine by creating fermenting yeast with superior ethanol tolerance and fermentation activity. Food Research International, 2018, 108, 83-92.	6.2	52
9	Lactobacillus plantarum AR113 alleviates DSS-induced colitis by regulating the TLR4/MyD88/NF-κB pathway and gut microbiota composition. Journal of Functional Foods, 2020, 67, 103854.	3.4	49
10	Structural characterization and rheological properties of β-D-glucan from hull-less barley (Hordeum) Tj ETQq0 0	0 rgBT /Ov	erlock 10 Tf 5
11	Antrodin A from <i>Antrodia camphorata </i> modulates the gut microbiome and liver metabolome in mice exposed to acute alcohol intake. Food and Function, 2021, 12, 2925-2937.	4.6	44
12	Structural features and emulsifying stability of a highly branched arabinogalactan from immature peach (Prunus persica) exudates. Food Hydrocolloids, 2020, 104, 105721.	10.7	43
13	Characterization of a yogurt-quality improving exopolysaccharide from Streptococcus thermophilus AR333. Food Hydrocolloids, 2018, 81, 220-228.	10.7	42
14	Bioactive exopolysaccharides from a S. thermophilus strain: Screening, purification and characterization. International Journal of Biological Macromolecules, 2016, 86, 402-407.	7.5	41
15	Flavor Formation in Chinese Rice Wine (Huangjiu): Impacts of the Flavor-Active Microorganisms, Raw Materials, and Fermentation Technology. Frontiers in Microbiology, 2020, 11, 580247.	3.5	41
16	Common Non-classically Secreted Bacterial Proteins with Experimental Evidence. Current Microbiology, 2016, 72, 102-111.	2.2	40
17	Flavor compounds with high odor activity values (OAVÂ>Â1) dominate the aroma of aged Chinese rice wine (Huangjiu) by molecular association. Food Chemistry, 2022, 383, 132370.	8.2	37
18	Comparison of <i>gal</i> – <i>lac</i> operons in wild-type galactose-positive and -negative <i>Streptococcus thermophilus</i> by genomics and transcription analysis. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 751-758.	3.0	36

#	Article	IF	Citations
19	A Surface Protein From Lactobacillus plantarum Increases the Adhesion of Lactobacillus Strains to Human Epithelial Cells. Frontiers in Microbiology, 2018, 9, 2858.	3.5	34
20	Antrodin A from mycelium of Antrodia camphorata alleviates acute alcoholic liver injury and modulates intestinal flora dysbiosis in mice. Journal of Ethnopharmacology, 2020, 254, 112681.	4.1	32
21	Characterization of a Panel of Strong Constitutive Promoters from <i>Streptococcus thermophilus</i> for Fine-Tuning Gene Expression. ACS Synthetic Biology, 2019, 8, 1469-1472.	3.8	31
22	Structural characteristics of tamarind seed polysaccharides treated by high-pressure homogenization and their effects on physicochemical properties of corn starch. Carbohydrate Polymers, 2021, 262, 117661.	10.2	29
23	Influence of freezing temperature before freeze-drying on the viability of various Lactobacillus plantarum strains. Journal of Dairy Science, 2020, 103, 3066-3075.	3.4	28
24	Probiotic yeast BR14 ameliorates DSS-induced colitis by restoring the gut barrier and adjusting the intestinal microbiota. Food and Function, 2021, 12, 8386-8398.	4.6	28
25	Fractionation, chemical characterization and immunostimulatory activity of β-glucan and galactoglucan from Russula vinosa Lindblad. Carbohydrate Polymers, 2021, 256, 117559.	10.2	27
26	An amendment to the fine structure of galactoxyloglucan from Tamarind (Tamarindus indica L.) seed. International Journal of Biological Macromolecules, 2020, 149, 1189-1197.	7.5	25
27	Coupling use of surfactant and in situ extractant for enhanced production of Antrodin C by submerged fermentation of Antrodia camphorata. Biochemical Engineering Journal, 2013, 79, 194-199.	3.6	23
28	Characterization of a cryptic plasmid isolated from Lactobacillus casei CP002616 and construction of shuttle vectors based on its replicon. Journal of Dairy Science, 2018, 101, 2875-2886.	3.4	23
29	A new potential secretion pathway for recombinant proteins in Bacillus subtilis. Microbial Cell Factories, 2015, 14, 179.	4.0	22
30	Membrane Fluidity of Saccharomyces cerevisiae from <i>Huangjiu</i> (Chinese Rice Wine) Is Variably Regulated by <i>OLE1</i> To Offset the Disruptive Effect of Ethanol. Applied and Environmental Microbiology, 2019, 85, .	3.1	22
31	<i>Lactobacillus casei</i> LC2W can inhibit the colonization of <i>Escherichia coli</i> O157:H7 <i>in vivo</i> and reduce the severity of colitis. Food and Function, 2019, 10, 5843-5852.	4.6	21
32	Proteolysis, lipolysis, texture and sensory properties of cheese ripened by Monascus fumeus. Food Research International, 2020, 137, 109657.	6.2	21
33	Comparison of oenological property, volatile profile, and sensory characteristic of Chinese rice wine fermented by different starters during brewing. International Journal of Food Properties, 2017, 20, S3195-S3211.	3.0	20
34	Short communication: Improving the activity of bile salt hydrolases in Lactobacillus casei based on in silico molecular docking and heterologous expression. Journal of Dairy Science, 2017, 100, 975-980.	3.4	19
35	Changes in volatile compound composition of <i>Antrodia camphorata</i> during solid state fermentation. Journal of the Science of Food and Agriculture, 2011, 91, 2463-2470.	3.5	18
36	Polysaccharides can improve the survival of Lactiplantibacillus plantarum subjected to freeze-drying. Journal of Dairy Science, 2021, 104, 2606-2614.	3.4	17

#	Article	IF	CITATIONS
37	Optimal combination of multiple cryoprotectants and freezing-thawing conditions for high lactobacilli survival rate during freezing and frozen storage. LWT - Food Science and Technology, 2019, 99, 217-223.	5.2	16
38	Bile salt hydrolase-overexpressing Lactobacillus strains can improve hepatic lipid accumulation in vitro in an NAFLD cell model. Food and Nutrition Research, 2020, 64, .	2.6	15
39	Exopolysaccharide from Streptococcus thermophilus as stabilizer in fermented dairy: Binding kinetics and interactions with casein of milk. International Journal of Biological Macromolecules, 2019, 140, 1018-1025.	7. 5	14
40	Colonisation with endogenous <i>Lactobacillus reuteri</i> R28 and exogenous <i>Lactobacillus plantarum</i> AR17-1 and the effects on intestinal inflammation in mice. Food and Function, 2021, 12, 2481-2488.	4.6	13
41	Specific bile salt hydrolase genes in Lactobacillus plantarum AR113 and relationship with bile salt resistance. LWT - Food Science and Technology, 2021, 145, 111208.	5.2	12
42	Effects of tamarind seed polysaccharide on physicochemical properties of corn starch treated by high pressure homogenization. LWT - Food Science and Technology, 2021, 150, 112010.	5.2	12
43	Enhancement of antroquinonol production during batch fermentation using pH control coupled with an oxygen vector. Journal of the Science of Food and Agriculture, 2019, 99, 449-456.	3.5	11
44	The second messenger c-di-AMP mediates bacterial exopolysaccharide biosynthesis: a review. Molecular Biology Reports, 2020, 47, 9149-9157.	2.3	11
45	Enhanced Antioxidant Activity in Streptococcus thermophilus by High-Level Expression of Superoxide Dismutase. Frontiers in Microbiology, 2020, 11, 579804.	3.5	9
46	CRISPR–Cas-mediated gene editing in lactic acid bacteria. Molecular Biology Reports, 2020, 47, 8133-8144.	2.3	9
47	LysR Family Regulator LttR Controls Production of Conjugated Linoleic Acid in Lactobacillus plantarum by Directly Activating the <i>cla</i> Operon. Applied and Environmental Microbiology, 2021, 87, .	3.1	9
48	Diverse conditions contribute to the cholesterol-lowering ability of different <i>Lactobacillus plantarum </i> strains. Food and Function, 2021, 12, 1079-1086.	4.6	9
49	Induction of antroquinonol production by addition of hydrogen peroxide in the fermentation of Antrodia camphorataS-29. Journal of the Science of Food and Agriculture, 2017, 97, 595-599.	3.5	8
50	Functional analysis and heterologous expression of bifunctional glutathione synthetase from Lactobacillus. Journal of Dairy Science, 2018, 101, 6937-6945.	3.4	8
51	C18:1 Improves the Freeze-Drying Resistance of <i>Lactobacillus plantarum</i> by Maintaining the Cell Membrane. ACS Applied Bio Materials, 2020, 3, 4933-4940.	4.6	8
52	Short communication: Dynamic changes in bacterial diversity during the production of powdered infant formula by PCR-DGGE and high-throughput sequencing. Journal of Dairy Science, 2020, 103, 5972-5977.	3.4	8
53	High-Level Expression and Substrate-Binding Region Modification of a Novel BL312 Milk-Clotting Enzyme To Enhance the Ratio of Milk-Clotting Activity to Proteolytic Activity. Journal of Agricultural and Food Chemistry, 2019, 67, 13684-13693.	5 . 2	7
54	RNAâ€Seq transcriptomic analyses ofAntrodia camphoratato determine antroquinonol and antrodin C biosynthetic mechanisms in thein situextractive fermentation. Journal of the Science of Food and Agriculture, 2020, 100, 4252-4262.	3.5	7

#	Article	IF	CITATIONS
55	Enhancement of antroquinonol and antrodin C productions via in situ extractive fermentation of Antrodia camphorata S-29. Applied Microbiology and Biotechnology, 2019, 103, 8351-8361.	3.6	6
56	Construction of a CRISPR/nCas9-assisted genome editing system for exopolysaccharide biosynthesis in Streptococcus thermophilus. Food Research International, 2022, 158, 111550.	6.2	6
57	An increase in cell membrane permeability in the in situ extractive fermentation improves the production of antroquinonol from <i>Antrodia camphorata</i> S-29. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 197-207.	3.0	5
58	Isolation of biogenic amineâ€negative lactic acid bacteria for Chinese rice wine fermentation based on molecular marker reverse screening. Journal of the Science of Food and Agriculture, 2020, 100, 3257-3261.	3.5	5
59	Enhancement of antroquinonol production via the overexpression of 4-hydroxybenzoate polyprenyltransferase biosynthesis-related genes in Antrodia cinnamomea. Phytochemistry, 2021, 184, 112677.	2.9	5
60	The Potential of Flos sophorae immaturus as a Pigment-Stabilizer to Improve the Monascus Pigments Preservation, Flavor Profiles, and Sensory Characteristic of Hong Qu Huangjiu. Frontiers in Microbiology, 2021, 12, 678903.	3.5	5
61	Comprehensive transcriptomic and proteomic analyses of antroquinonol biosynthetic genes and enzymes in Antrodia camphorata. AMB Express, 2020, 10, 136.	3.0	5
62	Antioxidant and <i>in vitro</i> digestion property of black rice (<i>Oryza sativa</i> L.): a comparison study between whole grain and rice bran. International Journal of Food Engineering, 2020, 16, .	1.5	5
63	Enhancement of triterpene production via in situ extractive fermentation of <i>Sanghuangporus vaninii</i> YCâ€1. Biotechnology and Applied Biochemistry, 2022, 69, 2561-2572.	3.1	5
64	Effects of different carbon sources on metabolic profiles of carbohydrates in <i>Streptococcus thermophilus</i> during fermentation. Journal of the Science of Food and Agriculture, 2022, 102, 4820-4829.	3.5	5
65	CRISPR/dCas9-based metabolic pathway engineering for the systematic optimization of exopolysaccharide biosynthesis in Streptococcus thermophilus. Journal of Dairy Science, 2022, 105, 6499-6512.	3.4	5
66	Rapid isolation of exopolysaccharideâ€producing <i>Streptococcus thermophilus</i> based on molecular marker screening. Journal of the Science of Food and Agriculture, 2022, 102, 862-867.	3.5	4
67	Anti-osteoporotic potential of Lactobacillus plantarum AR237 and AR495 in ovariectomized mice. Journal of Functional Foods, 2021, 87, 104762.	3.4	4
68	Reasons for the differences in biotransformation of conjugated linoleic acid by Lactobacillus plantarum. Journal of Dairy Science, 2021, 104, 11466-11473.	3.4	4
69	The Arginine Repressor ArgR ₂ Controls Conjugated Linoleic Acid Biosynthesis by Activating the <i>cla</i> Operon in <i>Lactiplantibacillus plantarum</i> Microbiology Spectrum, 2022, 10, .	3.0	4
70	Effect of oleic acid on the viability of different freeze-dried Lactiplantibacillus plantarum strains. Journal of Dairy Science, 2021, 104, 11457-11465.	3.4	3
71	Short communication: Genome-wide identification of new reference genes for reverse-transcription quantitative PCR in Streptococcus thermophilus based on RNA-sequencing analysis. Journal of Dairy Science, 2020, 103, 10001-10005.	3.4	3
72	Rapid Identification of Pseudomonas fluorescens Harboring Thermostable Alkaline Protease by Real-Time Loop-Mediated Isothermal Amplification. Journal of Food Protection, 2022, 85, 414-423.	1.7	3

#	Article	IF	CITATIONS
73	Genetic evidence for the requirements of antroquinonol biosynthesis by <i>Antrodia camphorata</i> during liquid-state fermentation. Journal of Industrial Microbiology and Biotechnology, 2022, 49, .	3.0	3
74	Effect of cultural conditions on antrodin <scp>C</scp> production by basidiomycete <i><scp>A</scp>ntrodia camphorata</i> in solidâ€state fermentation. Biotechnology and Applied Biochemistry, 2014, 61, 724-732.	3.1	2
75	Highâ€efficiency transformation of <i>Streptococcus thermophilus</i> using electroporation. Journal of the Science of Food and Agriculture, 2021, 101, 6578-6585.	3.5	2
76	Genes encoding bile salt hydrolase differentially affect adhesion of Lactiplantibacillus plantarum AR113. Journal of the Science of Food and Agriculture, 2021, , .	3 . 5	2
77	Anti-Osteoporotic Effect of Lactobacillus brevis AR281 in an Ovariectomized Mouse Model Mediated by Inhibition of Osteoclast Differentiation. Biology, 2022, 11, 359.	2.8	2
78	Use of a Novel Report Protein to Study the Secretion Signal of Flagellin in Bacillus subtilis. Current Microbiology, 2016, 73, 242-247.	2.2	1
79	Recent Research Advances in Small Regulatory RNAs in Streptococcus. Current Microbiology, 2021, 78, 2231-2241.	2.2	1
80	Effect of D-Ala-Ended Peptidoglycan Precursors on the Immune Regulation of Lactobacillus plantarum Strains. Frontiers in Immunology, 2021, 12, 825825.	4.8	1
81	Determination of the regulatory network and function of the lysR-type transcriptional regulator of Lactiplantibacillus plantarum, LpLttR. Microbial Cell Factories, 2022, 21, 65.	4.0	1