Tobias Rausch

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/370114/tobias-rausch-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

82	25,830	34	94
papers	citations	h-index	g-index
94	33,414 ext. citations	13.8	7.29
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
82	Pangenome-based genome inference allows efficient and accurate genotyping across a wide spectrum of variant classes <i>Nature Genetics</i> , 2022 ,	36.3	1
81	Haplotype-resolved diverse human genomes and integrated analysis of structural variation. <i>Science</i> , 2021 , 372,	33.3	100
80	Genomic insights into the pathogenesis of Epstein-Barr virus-associated diffuse large B-cell lymphoma by whole-genome and targeted amplicon sequencing. <i>Blood Cancer Journal</i> , 2021 , 11, 102	7	6
79	Metagenomic analysis of primary colorectal carcinomas and their metastases identifies potential microbial risk factors. <i>Molecular Oncology</i> , 2021 , 15, 3363-3384	7.9	4
78	VISOR: a versatile haplotype-aware structural variant simulator for short- and long-read sequencing. <i>Bioinformatics</i> , 2020 , 36, 1267-1269	7.2	8
77	Tracy: basecalling, alignment, assembly and deconvolution of sanger chromatogram trace files. <i>BMC Genomics</i> , 2020 , 21, 230	4.5	19
76	Germline Elongator mutations in Sonic Hedgehog medulloblastoma. <i>Nature</i> , 2020 , 580, 396-401	50.4	47
75	Pan-cancer analysis of whole genomes. <i>Nature</i> , 2020 , 578, 82-93	50.4	840
74	The effects of common structural variants on 3D chromatin structure. <i>BMC Genomics</i> , 2020 , 21, 95	4.5	9
73	MBCL-21. GERMLINE ELONGATOR MUTATIONS IN SONIC HEDGEHOG MEDULLOBLASTOMA. <i>Neuro-Oncology</i> , 2020 , 22, iii392-iii393	1	78
7 2	Single-cell analysis of structural variations and complex rearrangements with tri-channel processing. <i>Nature Biotechnology</i> , 2020 , 38, 343-354	44.5	17
71	TRiCoLOR: tandem repeat profiling using whole-genome long-read sequencing data. <i>GigaScience</i> , 2020 , 9,	7.6	7
70	Chromatin accessibility landscape of pediatric T-lymphoblastic leukemia and human T-cell precursors. <i>EMBO Molecular Medicine</i> , 2020 , 12, e12104	12	3
69	The NSL complex maintains nuclear architecture stability via lamin A/C acetylation. <i>Nature Cell Biology</i> , 2019 , 21, 1248-1260	23.4	34
68	Missense variants in NOX1 and p22phox in a case of very-early-onset inflammatory bowel disease are functionally linked to NOD2. <i>Journal of Physical Education and Sports Management</i> , 2019 , 5,	2.8	11
67	Multi-platform discovery of haplotype-resolved structural variation in human genomes. <i>Nature Communications</i> , 2019 , 10, 1784	17.4	346
66	MEDU-11. MOLECULAR CHARACTERIZATION OF ETMRs REVEALS A ROLE FOR R-LOOP MEDIATED CHROMOSOMAL INSTABILITY. <i>Neuro-Oncology</i> , 2019 , 21, ii105-ii105	1	78

(2016-2019)

A highly soluble Sleeping Beauty transposase improves control of gene insertion. <i>Nature Biotechnology</i> , 2019 , 37, 1502-1512	44.5	36
The molecular landscape of ETMR at diagnosis and relapse. <i>Nature</i> , 2019 , 576, 274-280	50.4	46
, , , and are frequently mutated in T-cell/histiocyte-rich large B-cell lymphoma. <i>Haematologica</i> , 2019 , 104, 330-337	6.6	23
Alfred: interactive multi-sample BAM alignment statistics, feature counting and feature annotation for long- and short-read sequencing. <i>Bioinformatics</i> , 2019 , 35, 2489-2491	7.2	29
ToTem: a tool for variant calling pipeline optimization. <i>BMC Bioinformatics</i> , 2018 , 19, 243	3.6	1
Coordinated expression and genetic polymorphisms in Grainyhead-like genes in human non-melanoma skin cancers. <i>BMC Cancer</i> , 2018 , 18, 23	4.8	6
Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. <i>Lancet Oncology, The</i> , 2018 , 19, 785-798	21.7	159
EMBR-10. GENOMIC COMPLEXITY AND EVOLUTION OF EMBRYONAL TUMORS WITH MULTILAYERED ROSETTES (ETMR). <i>Neuro-Oncology</i> , 2018 , 20, i70-i70	1	78
Longitudinal Multilevel Omic Analysis of Pediatric T-ALL Reveals Distinct Mechanisms for Disease Progression in Type 1 and in Type 2 Relapses. <i>Blood</i> , 2018 , 132, 2826-2826	2.2	
Pediatric T-ALLs Developing into a Type 2 Relapse Originate from Cells That Carry the Potential of Variable Maturation into Subclones with Distinct Chromatin Landscapes. <i>Blood</i> , 2018 , 132, 1545-1545	2.2	
Genomic structural variations lead to dysregulation of important coding and non-coding RNA species in dilated cardiomyopathy. <i>EMBO Molecular Medicine</i> , 2018 , 10, 107-120	12	29
PDX models recapitulate the genetic and epigenetic landscape of pediatric T-cell leukemia. <i>EMBO Molecular Medicine</i> , 2018 , 10,	12	20
Identification of a genetically defined ultra-high-risk group in relapsed pediatric T-lymphoblastic leukemia. <i>Blood Cancer Journal</i> , 2017 , 7, e523	7	54
Potential protective role of Grainyhead-like genes in the development of clear cell renal cell carcinoma. <i>Molecular Carcinogenesis</i> , 2017 , 56, 2414-2423	5	6
Characterization of Two Historic Smallpox Specimens from a Czech Museum. Viruses, 2017, 9,	6.2	18
Identification of novel follicular dendritic cell sarcoma markers, FDCSP and SRGN, by whole transcriptome sequencing. <i>Oncotarget</i> , 2017 , 8, 16463-16472	3.3	28
MCM3AP and POMP Mutations Cause a DNA-Repair and DNA-Damage-Signaling Defect in an Immunodeficient Child. <i>Human Mutation</i> , 2016 , 37, 257-68	4.7	12
Personality similarity between teachers and their students influences teacher judgement of student achievement. <i>Educational Psychology</i> , 2016 , 36, 863-878	2.2	18
	The molecular landscape of ETMR at diagnosis and relapse. <i>Nature</i> , 2019, 576, 274-280 The molecular landscape of ETMR at diagnosis and relapse. <i>Nature</i> , 2019, 576, 274-280 To molecular landscape of ETMR at diagnosis and relapse. <i>Nature</i> , 2019, 576, 274-280 Alfred: interactive multi-sample BAM alignment statistics, feature counting and feature annotation for long- and short-read sequencing. <i>Bioinformatics</i> , 2019, 35, 2489-2491 To Tem: a tool for variant calling pipeline optimization. <i>BMC Bioinformatics</i> , 2018, 19, 243 Coordinated expression and genetic polymorphisms in Grainyhead-like genes in human non-melanoma skin cancers. <i>BMC Cancer</i> , 2018, 18, 23 Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. <i>Lancet Oncology</i> , 7he, 2018, 19, 785-798 EMBR-10. GENOMIC COMPLEXITY AND EVOLUTION OF EMBRYONAL TUMORS WITH MULTILAYERED ROSETTES (ETMR). <i>Neuro-Oncology</i> , 2018, 20, 170-170 Longitudinal Multilevel Omic Analysis of Pediatric T-ALL Reveals Distinct Mechanisms for Disease Progression in Type 1 and in Type 2 Relapses. <i>Blood</i> , 2018, 132, 2826-2826 Pediatric T-ALLs Developing into a Type 2 Relapse Originate from Cells That Carry the Potential of Variable Maturation into Subclones with Distinct Chromatin Landscapes. <i>Blood</i> , 2018, 132, 1545-1545 Genomic structural variations lead to dysregulation of important coding and non-coding RNA species in dilated cardiomyopathy. <i>EMBO Molecular Medicine</i> , 2018, 10, 107-120 PDX models recapitulate the genetic and epigenetic landscape of pediatric T-cell leukemia. <i>EMBO Molecular Medicine</i> , 2018, 10, 107-120 Identification of a genetically defined ultra-high-risk group in relapsed pediatric T-lymphoblastic leukemia. <i>Blood Cancer Journal</i> , 2017, 7, e523 Characterization of Two Historic Smallpox Specimens from a Czech Museum. <i>Viruses</i> , 2017, 9, 16463-16472 MCM3AP and POMP Mutations Cause a DNA-Repair and DNA-Damage-Signaling Defect in an Immunodeficient Child	The molecular landscape of ETMR at diagnosis and relapse. <i>Nature</i> , 2019, 576, 274-280 50-4 In molecular landscape of ETMR at diagnosis and relapse. <i>Nature</i> , 2019, 576, 274-280 50-4 Alfred: interactive multi-sample BAM alignment statistics, feature counting and feature annotation for long- and short-read sequencing. <i>Bioinformatics</i> , 2019, 35, 2489-2491 7-2 ToTem: a tool for variant calling pipeline optimization. <i>BMC Bioinformatics</i> , 2018, 19, 243 36 Coordinated expression and genetic polymorphisms in Grainyhead-like genes in human non-melanoma skin cancers. <i>BMC Cancer</i> , 2018, 18, 23 Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. <i>Lancet Oncology, The</i> , 2018, 19, 785-798 EMBR-10. GENOMIC COMPLEXITY AND EVOLUTION OF EMBRYONAL TUMORS WITH MULTILAYERED ROSETTES (ETMR). <i>Neuro-Oncology</i> , 2018, 20, 170-170 Longitudinal Multilevel Omic Analysis of Pediatric T-ALL Reveals Distinct Mechanisms for Disease Progression in Type 1 and in Type 2 Relapses. <i>Blood</i> , 2018, 132, 2826-2826 Pediatric T-ALLs Developing into a Type 2 Relapse Originate from Cells That Carry the Potential of Variable Maturation into Subclones with Distinct Chromatin Landscapes. <i>Blood</i> , 2018, 132, 1545-1545 Genomic structural variations lead to dysregulation of important coding and non-coding RNA species in dilated cardiomyopathy. <i>EMBO Molecular Medicine</i> , 2018, 10, 107-120 12 PDX models recapitulate the genetic and epigenetic landscape of pediatric T-cell leukemia. <i>EMBO Molecular Medicine</i> , 2018, 10, 107-120 12 PDX models recapitulate the genetic and epigenetic landscape of pediatric T-tymphoblastic leukemia. <i>Blood Cancer Journal</i> , 2017, 7, e523 7 Potential protective role of Grainyhead-like genes in the development of clear cell renal cell carcinoma. <i>Molecular Carcinogenesis</i> , 2017, 56, 2414-2423 5 Characterization of Two Historic Smallpox Specimens from a Czech Museum. <i>Virus</i> es, 2017, 9, 62 MCM3AP and POMP Mutati

47	Highly recurrent mutations of SGK1, DUSP2 and JUNB in nodular lymphocyte predominant Hodgkin lymphoma. <i>Leukemia</i> , 2016 , 30, 844-53	10.7	48
46	Identification of an Ultra High-Risk and Targetable Molecular Signature in Relapsed Pediatric T-ALL. <i>Blood</i> , 2016 , 128, 1084-1084	2.2	
45	Identification of cytokine-induced modulation of microRNA expression and secretion as measured by a novel microRNA specific qPCR assay. <i>Scientific Reports</i> , 2015 , 5, 11590	4.9	42
44	Assembly and diploid architecture of an individual human genome via single-molecule technologies. <i>Nature Methods</i> , 2015 , 12, 780-6	21.6	383
43	A global reference for human genetic variation. <i>Nature</i> , 2015 , 526, 68-74	50.4	8599
42	An integrated map of structural variation in 2,504 human genomes. <i>Nature</i> , 2015 , 526, 75-81	50.4	1368
41	Pediatric T-cell lymphoblastic leukemia evolves into relapse by clonal selection, acquisition of mutations and promoter hypomethylation. <i>Haematologica</i> , 2015 , 100, 1442-50	6.6	50
40	A novel autosomal recessive TERT T1129P mutation in a dyskeratosis congenita family leads to cellular senescence and loss of CD34+ hematopoietic stem cells not reversible by mTOR-inhibition. <i>Aging</i> , 2015 , 7, 911-27	5.6	10
39	Mit Wissen zu akkurateren Urteilen?. <i>Zeitschrift Fur Entwicklungspsychologie Und Padagogische Psychologie</i> , 2015 , 47, 147-158	0.8	4
38	Gene Panel Sequencing of Primary and Relapsed Pediatric T-ALL Shows That Relapse-Specific Mutations Are Diverse and Mostly Non-Recurrent. <i>Blood</i> , 2015 , 126, 1428-1428	2.2	
37	Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. <i>Cancer Cell</i> , 2014 , 25, 393-405	24.3	469
36	Identification of novel sequence variations in microRNAs in chronic lymphocytic leukemia. <i>Carcinogenesis</i> , 2014 , 35, 992-1002	4.6	15
35	Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel. <i>Nature Communications</i> , 2014 , 5, 3934	17.4	253
34	The activating STAT5B N642H mutation is a common abnormality in pediatric T-cell acute lymphoblastic leukemia and confers a higher risk of relapse. <i>Haematologica</i> , 2014 , 99, e188-92	6.6	82
33	Accuracy of Teacher Judgments 2014 , 27-43		14
32	Targeted Deep Sequencing of Genetic Alterations Identified By Whole Exome Sequencing Reveals Clonal Evolution in Pediatric T-Lymphoblastic Leukemia. <i>Blood</i> , 2014 , 124, 491-491	2.2	
31	Whole-exome sequencing links caspase recruitment domain 11 (CARD11) inactivation to severe combined immunodeficiency. <i>Journal of Allergy and Clinical Immunology</i> , 2013 , 131, 1376-83.e3	11.5	103
30	Identification of a Ninein (NIN) mutation in a family with spondyloepimetaphyseal dysplasia with joint laxity (leptodactylic type)-like phenotype. <i>Matrix Biology</i> , 2013 , 32, 387-92	11.4	12

(2009-2013)

29	Integrative genomic analyses reveal an androgen-driven somatic alteration landscape in early-onset prostate cancer. <i>Cancer Cell</i> , 2013 , 23, 159-70	24.3	259
28	The genomic and transcriptomic landscape of a HeLa cell line. <i>G3: Genes, Genomes, Genetics</i> , 2013 , 3, 1213-24	3.2	269
27	Impact of genomic structural variation in Drosophila melanogaster based on population-scale sequencing. <i>Genome Research</i> , 2013 , 23, 568-79	9.7	53
26	Whole Exome Sequencing Identifies Novel Lyst-Missense Mutations In Incomplete Childhood Chediak-Higashi-Syndrome Presenting As Hemphagocytic Lymphohistiocytosis (HLH). <i>Blood</i> , 2013 , 122, 3479-3479	2.2	
25	Whole Exome Sequencing In Relapsed Pediatric T-ALL: Progression Into Relapse Is Characterized By An Increased Number Of Somatic Mutations and a Conservation Of Mutations In Leukemogenic Driver Genes. <i>Blood</i> , 2013 , 122, 228-228	2.2	
24	DELLY: structural variant discovery by integrated paired-end and split-read analysis. <i>Bioinformatics</i> , 2012 , 28, i333-i339	7.2	1069
23	Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. <i>Cell</i> , 2012 , 148, 59-71	56.2	600
22	An integrated map of genetic variation from 1,092 human genomes. <i>Nature</i> , 2012 , 491, 56-65	50.4	6049
21	Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing. <i>Nature Genetics</i> , 2012 , 44, 1316-20	36.3	317
20	Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. <i>Nature</i> , 2012 , 482, 226-31	50.4	1655
19	ICGC PedBrain - dissecting the genomic complexity underlying medulloblastoma using whole-genome sequencing. <i>BMC Proceedings</i> , 2012 , 6,	2.3	1
18	Dissecting the genomic complexity underlying medulloblastoma. <i>Nature</i> , 2012 , 488, 100-5	50.4	623
17	Sequence Variations in miRNA Genes Are Common and May Affect Their Expression in Patients with Chronic Lymphocytic Leukemia. <i>Blood</i> , 2012 , 120, 3895-3895	2.2	
16	Whole-Exome Sequencing Links CARD11 Inactivation with SCID. <i>Blood</i> , 2012 , 120, 258-258	2.2	
15	Mapping copy number variation by population-scale genome sequencing. <i>Nature</i> , 2011 , 470, 59-65	50.4	833
14	Mutational Analysis of Mir-29 Family Members in Chronic Lymphocytic Leukemia. <i>Blood</i> , 2011 , 118, 17	70 ₂ 13770)
13	Practical Multiple Sequence Alignment 2010 , 21-43		
12	RazerSfast read mapping with sensitivity control. <i>Genome Research</i> , 2009 , 19, 1646-54	9.7	104

11	A consistency-based consensus algorithm for de novo and reference-guided sequence assembly of short reads. <i>Bioinformatics</i> , 2009 , 25, 1118-24	7.2	24
10	SeqAn an efficient, generic C++ library for sequence analysis. <i>BMC Bioinformatics</i> , 2008 , 9, 11	3.6	210
9	Robust consensus computation. <i>BMC Bioinformatics</i> , 2008 , 9,	3.6	2
8	Segment-based multiple sequence alignment. <i>Bioinformatics</i> , 2008 , 24, i187-92	7.2	39
7	A parallel genetic algorithm to discover patterns in genetic markers that indicate predisposition to multifactorial disease. <i>Computers in Biology and Medicine</i> , 2008 , 38, 826-36	7	6
6	Fast and Adaptive Variable Order Markov Chain Construction. <i>Lecture Notes in Computer Science</i> , 2008 , 306-317	0.9	11
5	Multi-platform discovery of haplotype-resolved structural variation in human genomes		26
4	Pangenome-based genome inference		11
3	De novo assembly of 64 haplotype-resolved human genomes of diverse ancestry and integrated analysis of structural variation		3
2	Germline determinants of the somatic mutation landscape in 2,642 cancer genomes		13
1	Local emergence and decline of a SARS-CoV-2 variant with mutations L452R and N501Y in the spike pro	tein	6