IvÃ;n GarcÃ-a-Magariño

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3701113/publications.pdf

Version: 2024-02-01

361045 414034 106 1,458 20 32 citations h-index g-index papers 109 109 109 1507 docs citations citing authors all docs times ranked

#	Article	IF	Citations
1	Efficient sustainable algorithm for numerical solution of nonlinear delay Fredholmâ€Volterra integral equations via Haar wavelet for dense sensor networks in emerging telecommunications. Transactions on Emerging Telecommunications Technologies, 2022, 33, e3877.	2.6	14
2	EmotloT: An IoT System to Improve Users' Wellbeing. Applied Sciences (Switzerland), 2022, 12, 5804.	1.3	9
3	The cupboard task: An immersive virtual reality-based system for everyday memory assessment. International Journal of Human Computer Studies, 2022, 167, 102885.	3.7	15
4	Deep learning-based urban big data fusion in smart cities: Towards traffic monitoring and flow-preserving fusion. Computers and Electrical Engineering, 2021, 89, 106906.	3.0	64
5	A Collaborative Platform for the Detection of Non-inclusive Situations in Smart Cities. Lecture Notes in Computer Science, 2021, , 206-215.	1.0	2
6	A Virtual Reality-Based Cognitive Telerehabilitation System for Use in the COVID-19 Pandemic. Sustainability, 2021, 13, 2183.	1.6	23
7	MASEMUL: A Simulation Tool for Movement-Aware MANET Scheduling Strategies for Multimedia Communications. Wireless Communications and Mobile Computing, 2021, 2021, 1-12.	0.8	13
8	A machine-learning scraping tool for data fusion in the analysis of sentiments about pandemics for supporting business decisions with human-centric AI explanations. PeerJ Computer Science, 2021, 7, e713.	2.7	9
9	Algorithm based on normal coordinate vectors with 16 segments for the data fusion from hand-written Arabic text implemented with MATLAB. PeerJ Computer Science, 2021, 7, e705.	2.7	O
10	Healthcare Big Data Management and Analytics in Scientific Programming. Scientific Programming, 2021, 2021, 1-2.	0.5	1
11	Agent-Based Simulators for Empowering Patients in Self-Care Programs Using Mobile Agents with Machine Learning. Mobile Information Systems, 2021, 2021, 1-10.	0.4	9
12	Estimation of missing prices in real-estate market agent-based simulations with machine learning and dimensionality reduction methods. Neural Computing and Applications, 2020, 32, 2665-2682.	3.2	11
13	Augmented Reality Interface for Complex Anatomy Learning in the Central Nervous System: A Systematic Review. Journal of Healthcare Engineering, 2020, 2020, 1-15.	1.1	14
14	Head-Mounted Display-Based Application for Cognitive Training. Sensors, 2020, 20, 6552.	2.1	21
15	Quantum Diffie–Hellman Extended to Dynamic Quantum Group Key Agreement for e-Healthcare Multi-Agent Systems in Smart Cities. Sensors, 2020, 20, 3940.	2.1	16
16	Real-Time Analysis of Online Sources for Supporting Business Intelligence Illustrated with Bitcoin Investments and IoT Smart-Meter Sensors in Smart Cities. Electronics (Switzerland), 2020, 9, 1101.	1.8	10
17	Close2U: An App for Monitoring Cancer Patients with Enriched Information from Interaction Patterns. Journal of Healthcare Engineering, 2020, 2020, 1-13.	1.1	5
18	A methodology for the design and development of gamified mobile apps for monitoring cancer survivors. Journal of Biomedical Informatics, 2020, 106, 103439.	2.5	9

#	Article	IF	Citations
19	A Comprehensive Analysis of Healthcare Big Data Management, Analytics and Scientific Programming. IEEE Access, 2020, 8, 95714-95733.	2.6	61
20	Defenses Against Perception-Layer Attacks on IoT Smart Furniture for Impaired People. IEEE Access, 2020, 8, 119795-119805.	2.6	24
21	An Agent-Based Simulator Applied to Teaching-Learning Process to Predict Sociometric Indices in Higher Education. IEEE Transactions on Learning Technologies, 2020, 13, 246-258.	2.2	7
22	Simulating and modelling the DAX index and the USO Etf financial time series by using a simple agentâ€based learning architecture. Expert Systems, 2020, 37, e12516.	2.9	3
23	Smart Green Communication Protocols Based on Several-Fold Messages Extracted from Common Sequential Patterns in UAVs. IEEE Network, 2020, 34, 249-255.	4.9	3
24	A Collocation Method for Numerical Solution of Nonlinear Delay Integro-Differential Equations for Wireless Sensor Network and Internet of Things. Sensors, 2020, 20, 1962.	2.1	26
25	Immersive Virtual Reality App to Promote Healthy Eating in Children. Communications in Computer and Information Science, 2020, , 9-15.	0.4	2
26	ABS-MindBurnout: An agent-based simulator of the effects of mindfulness-based interventions on job burnout. Journal of Computational Science, 2019, 36, 101012.	1.5	4
27	Effects of Immersive Virtual Reality on the Heart Rate of Athlete's Warm-Up. Lecture Notes in Computer Science, 2019, , 175-185.	1.0	6
28	Framework-supported mechanism of testing algorithms for assessing memory and detecting disorientation from IoT sensors. , 2019, , .		1
29	Human-Centric Al for Trustworthy IoT Systems With Explainable Multilayer Perceptrons. IEEE Access, 2019, 7, 125562-125574.	2.6	45
30	Wearable Technology and Mobile Applications for Healthcare. Mobile Information Systems, 2019, 2019, 1-2.	0.4	8
31	Birthmark based identification of software piracy using Haar wavelet. Mathematics and Computers in Simulation, 2019, 166, 144-154.	2.4	26
32	Smart Cupboard for Assessing Memory in Home Environment. Sensors, 2019, 19, 2552.	2.1	14
33	Fog computing for assisting and tracking elder patients with neurodegenerative diseases. Peer-to-Peer Networking and Applications, 2019, 12, 1225-1235.	2.6	8
34	Close2U: An App for Monitoring Cancer Patients with a Gamification System to Improve the Engagement. Proceedings (mdpi), 2019, 31, .	0.2	2
35	Internet of Things for Healthcare Using Effects of Mobile Computing: A Systematic Literature Review. Wireless Communications and Mobile Computing, 2019, 2019, 1-20.	0.8	119
36	Agent-based IoT Coordination for Smart Cities Considering Security and Privacy. , 2019, , .		5

#	Article	IF	CITATIONS
37	Security in Vehicles With IoT by Prioritization Rules, Vehicle Certificates, and Trust Management. IEEE Internet of Things Journal, 2019, 6, 5927-5934.	5.5	33
38	Collaboration of Smart IoT Devices Exemplified With Smart Cupboards. IEEE Access, 2019, 7, 9881-9892.	2.6	13
39	A mobile application to report and detect 3D body emotional poses. Expert Systems With Applications, 2019, 122, 207-216.	4.4	7
40	Security in networks of unmanned aerial vehicles for surveillance with an agent-based approach inspired by the principles of blockchain. Ad Hoc Networks, 2019, 86, 72-82.	3.4	78
41	PriorityNet App: A Mobile Application for Establishing Priorities in the Context of 5G Ultra-Dense Networks. IEEE Access, 2018, 6, 14141-14150.	2.6	10
42	Agent-Based Simulation of Smart Beds With Internet-of-Things for Exploring Big Data Analytics. IEEE Access, 2018, 6, 366-379.	2.6	33
43	Bodily sensation maps: Exploring a new direction for detecting emotions from user self-reported data. International Journal of Human Computer Studies, 2018, 113, 32-47.	3.7	7
44	Survivability Strategies for Emerging Wireless Networks With Data Mining Techniques: a Case Study With NetLogo and RapidMiner. IEEE Access, 2018, 6, 27958-27970.	2.6	7
45	FAMAP: A Framework for Developing m-Health Apps. Advances in Intelligent Systems and Computing, 2018, , 850-859.	0.5	8
46	ABSCEV: An agent-based simulation framework about smart transportation for reducing waiting times in charging electric vehicles. Computer Networks, 2018, 138, 119-135.	3.2	27
47	Comparative Analysis Between Different Facial Authentication Tools for Assessing Their Integration in m-Health Mobile Applications. Advances in Intelligent Systems and Computing, 2018, , 1153-1161.	0.5	1
48	Green Communication for Tracking Heart Rate with Smartbands. Sensors, 2018, 18, 2652.	2.1	12
49	ABS-SmartComAgri: An Agent-Based Simulator of Smart Communication Protocols in Wireless Sensor Networks for Debugging in Precision Agriculture. Sensors, 2018, 18, 998.	2.1	11
50	ABS-DDoS: An Agent-Based Simulator about Strategies of Both DDoS Attacks and Their Defenses, to Achieve Efficient Data Forwarding in Sensor Networks and IoT Devices. Wireless Communications and Mobile Computing, 2018, 2018, 1-11.	0.8	4
51	ABS-MindHeart: An agent based simulator of the influence of mindfulness programs on heart rate variability. Journal of Computational Science, 2017, 19, 11-20.	1.5	11
52	Combining novelty detectors to improve accelerometer-based fall detection. Medical and Biological Engineering and Computing, 2017, 55, 1849-1858.	1.6	17
53	System to Recommend the Best Place to Live Based on Wellness State of the User Employing the Heart Rate Variability. IEEE Access, 2017, 5, 10594-10604.	2.6	17
54	ABSEM: An agent-based simulator of emotions in mindfulness programs. Expert Systems With Applications, 2017, 84, 49-57.	4.4	6

#	Article	IF	CITATIONS
55	Agent-based simulation of real-estate transactions. Journal of Computational Science, 2017, 21, 60-76.	1.5	12
56	Development and initial evaluation of a mobile application to help with mindfulness training and practice. International Journal of Medical Informatics, 2017, 105, 59-67.	1.6	24
57	Proposal to Apply a Code of Good Teaching Practice in Engineering. Revista Iberoamericana De Tecnologias Del Aprendizaje, 2017, 12, 116-123.	0.7	O
58	TABSAOND: A technique for developing agent-based simulation apps and online tools with nondeterministic decisions. Simulation Modelling Practice and Theory, 2017, 77, 84-107.	2.2	31
59	A proposal to improve the authentication process in m-health environments. IEEE Access, 2017, 5, 22530-22544.	2.6	14
60	ABS-FishCount: An Agent-Based Simulator of Underwater Sensors for Measuring the Amount of Fish. Sensors, 2017, 17, 2606.	2.1	9
61	ABS-SOCI: An Agent-Based Simulator of Student Sociograms. Applied Sciences (Switzerland), 2017, 7, 1126.	1.3	5
62	ABS-TrustSDN: An Agent-Based Simulator of Trust Strategies in Software-Defined Networks. Security and Communication Networks, 2017, 2017, 1-9.	1.0	6
63	ABS-SmartPriority: An Agent-Based Simulator of Strategies for Managing Self-Reported Priorities in Smart Cities. Wireless Communications and Mobile Computing, 2017, 2017, 1-9.	0.8	4
64	A smartphone-based system for detecting hand tremors in unconstrained environments. Personal and Ubiquitous Computing, 2016, 20, 959-971.	1.9	21
65	ATABS: A technique for automatically training agent-based simulators. Simulation Modelling Practice and Theory, 2016, 66, 174-192.	2.2	7
66	A model-driven approach for constructing ambient assisted-living multi-agent systems customized for Parkinson patients. Journal of Systems and Software, 2016, 111, 34-48.	3.3	6
67	Effects of sensory cueing in virtual motor rehabilitation. A review. Journal of Biomedical Informatics, 2016, 60, 49-57.	2.5	23
68	A hybrid approach with agent-based simulation and clustering for sociograms. Information Sciences, 2016, 345, 81-95.	4.0	8
69	Designing Teaching Strategies with an Agent-Based Simulator. Lecture Notes in Business Information Processing, 2016, , 176-185.	0.8	1
70	EXPERIENCES USING FREE SOFTWARE SIMULATION TOOLS IN ENGINEERING HIGHER EDUCATION. EDULEARN Proceedings, 2016, , .	0.0	0
71	FTS-SOCI: An agent-based framework for simulating teaching strategies with evolutions of sociograms. Simulation Modelling Practice and Theory, 2015, 57, 161-178.	2.2	8
72	A Technique for Metamodeling Diagram Types with Tool Support. Arabian Journal for Science and Engineering, 2015, 40, 1359-1373.	1.1	1

#	Article	IF	Citations
73	ABSTUR: An Agent-based Simulator for Tourist Urban Routes. Expert Systems With Applications, 2015, 42, 5287-5302.	4.4	20
74	A Kinect-Based System for Lower Limb Rehabilitation in Parkinson's Disease Patients: a Pilot Study. Journal of Medical Systems, 2015, 39, 103.	2.2	63
75	PEABS: A Process for developing Efficient Agent-Based Simulators. Engineering Applications of Artificial Intelligence, 2015, 46, 104-112.	4.3	30
76	Towards the integration of the agent-oriented modeling diversity with a powertype-based language. Computer Standards and Interfaces, 2014, 36, 941-952.	3.8	11
77	A collection of method fragments automated with model transformations in agent-oriented modeling. Engineering Applications of Artificial Intelligence, 2013, 26, 1131-1148.	4.3	2
78	Robust design of multi-agent system interactions: A testing approach based on pattern matching. Engineering Applications of Artificial Intelligence, 2013, 26, 2093-2104.	4.3	5
79	Agent-oriented modeling and development of a system for crisis management. Expert Systems With Applications, 2013, 40, 6580-6592.	4.4	22
80	A MEASUREMENT APPROACH FOR OVERCOMING UNBALANCED OVERWORK IN MULTI-AGENT SYSTEMS. International Journal on Artificial Intelligence Tools, 2013, 22, 1350026.	0.7	2
81	Defining and Transforming Models of Parkinson Patients in the Development of Assisted-Living Multi-agent Systems with INGENIAS. Communications in Computer and Information Science, 2013, , 460-471.	0.4	2
82	A set of method fragments for developing multi-agent systems assisted with model transformations. , $2011, , .$		1
83	Modular design of a hybrid genetic algorithm for a flexible job–shop scheduling problem. Knowledge-Based Systems, 2011, 24, 102-112.	4.0	34
84	Detection of undesirable communication patterns in multi-agent systems. Engineering Applications of Artificial Intelligence, 2011, 24, 103-116.	4.3	12
85	Revealing bullying patterns in multi-agent systems. Journal of Systems and Software, 2011, 84, 1563-1575.	3.3	6
86	Model Transformations for Improving Multi-agent System Development in INGENIAS. Lecture Notes in Computer Science, 2011, , 51-65.	1.0	3
87	An Exploratory Analysis for Designing Robust Interactions in Multi-Agent Systems. Advances in Intelligent and Soft Computing, 2011, , 225-230.	0.2	1
88	A technique for defining agent-oriented engineering processes with tool support. Engineering Applications of Artificial Intelligence, 2010, 23, 432-444.	4.3	26
89	A framework for the definition of metamodels for Computer-Aided Software Engineering tools. Information and Software Technology, 2010, 52, 422-435.	3.0	19
90	Extraction of Execution Patterns in Multi-Agent Systems. IEEE Latin America Transactions, 2010, 8, 311-317.	1.2	5

#	Article	IF	Citations
91	A metrics suite for evaluating agent-oriented architectures. , 2010, , .		10
92	Detection of Overworked Agents in INGENIAS. Advances in Intelligent and Soft Computing, 2010, , 113-118.	0.2	2
93	Modeling Processes of AOSE Methodologies by Means of a New Editor. Advances in Soft Computing, 2009, , 672-681.	0.4	O
94	Guideline for the definition of EMF metamodels using an Entity-Relationship approach. Information and Software Technology, 2009, 51, 1217-1230.	3.0	13
95	INGENIAS-SCRUM Development Process for Multi-Agent Development. Advances in Soft Computing, 2009, , 108-117.	0.4	5
96	Model Transformation By-Example: An Algorithm for Generating Many-to-Many Transformation Rules in Several Model Transformation Languages. Lecture Notes in Computer Science, 2009, , 52-66.	1.0	19
97	A Technique for Defining Metamodel Translations. IEICE Transactions on Information and Systems, 2009, E92-D, 2043-2052.	0.4	2
98	A Tool for Generating Model Transformations By-Example in Multi-Agent Systems. Advances in Intelligent and Soft Computing, 2009, , 70-79.	0.2	11
99	An Evaluation Framework for MAS Modeling Languages Based on Metamodel Metrics. Lecture Notes in Computer Science, 2009, , 101-115.	1.0	8
100	Evaluation of Multi-Agent System Communication in INGENIAS. Lecture Notes in Computer Science, 2009, , 619-626.	1.0	4
101	A Complete-Computerised Delphi Process with a Multi-Agent System. Lecture Notes in Computer Science, 2009, , 120-135.	1.0	5
102	INGENIAS Development Process Assisted with Chains of Transformations. Lecture Notes in Computer Science, 2009, , 514-521.	1.0	2
103	Definition of Process Models for Agent-Based Development. Lecture Notes in Computer Science, 2009, , 60-73.	1.0	4
104	INGENIAS Development Assisted with Model Transformation By-Example: A Practical Case. Advances in Intelligent and Soft Computing, 2009, , 40-49.	0.2	6
105	Framework for Defining Model Language Metamodels for CASE Tools. , 2008, , .		1
106	Towards the Coexistence of Different Multi-Agent System Modeling Languages with a Powertype-Based Metamodel. Advances in Soft Computing, 0, , 189-193.	0.4	1