Jesus Alcazar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3700898/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flow Chemistry in Drug Discovery: Challenges and Opportunities. Topics in Medicinal Chemistry, 2021, , 1-22.	0.8	1
2	C(sp 3)â^'C(sp 3) Bond Formation via Electrochemical Alkoxylation and Subsequent Lewis Acid Promoted Reactions. Advanced Synthesis and Catalysis, 2021, 363, 4521.	4.3	5
3	7 Flow chemistry in fine chemical production. , 2021, , 193-228.		1
4	A biomimetic S _H 2 cross-coupling mechanism for quaternary sp ³ -carbon formation. Science, 2021, 374, 1258-1263.	12.6	64
5	Flow chemistry as a tool to access novel chemical space for drug discovery. Future Medicinal Chemistry, 2020, 12, 1547-1563.	2.3	7
6	Synergy between supported ionic liquid-like phases and immobilized palladium N-heterocyclic carbene–phosphine complexes for the Negishi reaction under flow conditions. Beilstein Journal of Organic Chemistry, 2020, 16, 1924-1935.	2.2	4
7	Formation of quaternary carbons through cobalt-catalyzed C(sp3)–C(sp3) Negishi cross-coupling. Chemical Communications, 2020, 56, 8210-8213.	4.1	12
8	Visibleâ€Lightâ€Promoted Iron atalyzed C(sp ²)–C(sp ³) Kumada Crossâ€Coupling Flow. Angewandte Chemie - International Edition, 2019, 58, 13030-13034.	^{g in} 13.8	71
9	Visibleâ€Lightâ€Promoted Iron atalyzed C(sp 2)–C(sp 3) Kumada Cross oupling in Flow. Angewandte Chemie, 2019, 131, 13164-13168.	2.0	9
10	<i>De novo</i> Design of Organic Photocatalysts: Bithiophene Derivatives for the Visibleâ€light Induced Câ^'H Functionalization of Heteroarenes. Advanced Synthesis and Catalysis, 2019, 361, 945-950.	4.3	43
11	Scalability of Visible-Light-Induced Nickel Negishi Reactions: A Combination of Flow Photochemistry, Use of Solid Reagents, and In-Line NMR Monitoring. Journal of Organic Chemistry, 2019, 84, 4748-4753.	3.2	29
12	Negishi coupling reactions with [¹¹ C]CH ₃ I: a versatile method for efficient ¹¹ C–C bond formation. Chemical Communications, 2018, 54, 4398-4401.	4.1	8
13	Visible‣ightâ€Induced Nickelâ€Catalyzed Negishi Crossâ€Couplings by Exogenousâ€Photosensitizerâ€Free Photocatalysis. Angewandte Chemie - International Edition, 2018, 57, 8473-8477.	13.8	65
14	On-demand synthesis of organozinc halides under continuous flow conditions. Nature Protocols, 2018, 13, 324-334.	12.0	51
15	Visible‣ightâ€Induced Nickelâ€Catalyzed Negishi Crossâ€Couplings by Exogenousâ€Photosensitizerâ€Free Photocatalysis. Angewandte Chemie, 2018, 130, 8609-8613.	2.0	11
16	Photoinduced Palladiumâ€Catalyzed Negishi Crossâ€Couplings Enabled by the Visibleâ€Light Absorption of Palladium–Zinc Complexes. Angewandte Chemie, 2018, 130, 13415-13420.	2.0	9
17	Photoinduced Palladiumâ€Catalyzed Negishi Crossâ€Couplings Enabled by the Visibleâ€Light Absorption of Palladium–Zinc Complexes. Angewandte Chemie - International Edition, 2018, 57, 13231-13236.	13.8	43
18	Rücktitelbild: Visibleâ€Lightâ€Induced Nickelâ€Catalyzed Negishi Crossâ€Couplings by Exogenousâ€Photosensitizerâ€Free Photocatalysis (Angew. Chem. 28/2018). Angewandte Chemie, 2018, 130, 8918-8918.	2.0	0

JESUS ALCAZAR

#	Article	IF	CITATIONS
19	Improving the throughput of batch photochemical reactions using flow: Dual photoredox and nickel catalysis in flow for C(sp2) <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mtext></mml:mtext></mml:mrow></mml:math> C(sp3) cross-coupling. Bioorganic and Medicinal Chemistry, 2017, 25, 6190-6196.	3.0	37
20	Increasing global access to the high-volume HIV drug nevirapine through process intensification. Green Chemistry, 2017, 19, 2986-2991.	9.0	31
21	Visible-Light-Induced Trifluoromethylation of Highly Functionalized Arenes and Heteroarenes in Continuous Flow. Synthesis, 2017, 49, 4978-4985.	2.3	55
22	Grignard Reagents on a Tab: Direct Magnesium Insertion under Flow Conditions. Organic Letters, 2017, 19, 3747-3750.	4.6	40
23	What We Observe In Vivo Is Not Always What We See In Vitro: Development and Validation of 11C-JNJ-42491293, A Novel Radioligand for mGluR2. Journal of Nuclear Medicine, 2017, 58, 110-116.	5.0	31
24	Recent Advances of Microfluidics Technologies in the Field of Medicinal Chemistry. Annual Reports in Medicinal Chemistry, 2017, 50, 87-147.	0.9	3
25	Comparison of New Tau PET-Tracer Candidates With [¹⁸ F]T808 and [¹⁸ F]T807. Molecular Imaging, 2016, 15, 153601211562492.	1.4	37
26	Preclinical Evaluation of a P2X7 Receptor–Selective Radiotracer: PET Studies in a Rat Model with Local Overexpression of the Human P2X7 Receptor and in Nonhuman Primates. Journal of Nuclear Medicine, 2016, 57, 1436-1441.	5.0	77
27	Preliminary investigation of 6,7-dihydropyrazolo[1,5- a]pyrazin-4-one derivatives as a novel series of mGlu 5 receptor positive allosteric modulators with efficacy in preclinical models of schizophrenia. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 429-434.	2.2	7
28	Discovery of VU0409551/JNJ-46778212: An mGlu ₅ Positive Allosteric Modulator Clinical Candidate Targeting Schizophrenia. ACS Medicinal Chemistry Letters, 2015, 6, 716-720.	2.8	41
29	Further optimization of the mGlu5 PAM clinical candidate VU0409551/JNJ-46778212: Progress and challenges towards a back-up compound. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3515-3519.	2.2	7
30	Novel methyl substituted 1-(5,6-dihydro-[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl)methanones are P2X7 antagonists. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3157-3163.	2.2	30
31	Biased mGlu 5 -Positive Allosteric Modulators Provide InÂVivo Efficacy without Potentiating mGlu 5 Modulation of NMDAR Currents. Neuron, 2015, 86, 1029-1040.	8.1	121
32	First Example of Alkyl–Aryl Negishi Cross-Coupling in Flow: Mild, Efficient and Clean Introduction of Functionalized Alkyl Groups. Journal of Flow Chemistry, 2015, 4, 22-25.	1.9	38
33	Practical preparation of challenging amides from non-nucleophilic amines and esters under flow conditions. Chemical Communications, 2014, 50, 15094-15097.	4.1	39
34	Discovery of 1-Butyl-3-chloro-4-(4-phenyl-1-piperidinyl)-(1 <i>H</i>)-pyridone (JNJ-40411813): A Novel Positive Allosteric Modulator of the Metabotropic Glutamate 2 Receptor. Journal of Medicinal Chemistry, 2014, 57, 6495-6512.	6.4	54
35	Continuous Synthesis of Organozinc Halides Coupled to Negishi Reactions. Advanced Synthesis and Catalysis, 2014, 356, 3737-3741.	4.3	62
36	First Example of a Continuous-Flow Carbonylation Reaction Using Aryl Formates as CO Precursors. Journal of Flow Chemistry, 2014, 4, 105-109.	1.9	17

JESUS ALCAZAR

#	Article	IF	CITATIONS
37	Recent Advances in Positron Emission Tomography (PET) Radiotracers for Imaging Phosphodiesterases. Current Topics in Medicinal Chemistry, 2012, 12, 1224-1236.	2.1	18
38	Cross oupling in Flow using Supported Catalysts: Mild, Clean, Efficient and Sustainable Suzuki–Miyaura Coupling in a Single Pass. Advanced Synthesis and Catalysis, 2012, 354, 3456-3460.	4.3	48
39	Synthesis, Evaluation, and Radiolabeling of New Potent Positive Allosteric Modulators of the Metabotropic Glutamate Receptor 2 as Potential Tracers for Positron Emission Tomography Imaging. Journal of Medicinal Chemistry, 2012, 55, 8685-8699.	6.4	48
40	Preparation of amides mediated by isopropylmagnesium chloride under continuous flow conditions. Green Chemistry, 2012, 14, 1335.	9.0	54
41	Application of Flow Chemistry to the Selective Reduction of Esters to Aldehydes. European Journal of Organic Chemistry, 2012, 2012, 260-263.	2.4	25
42	Influence of Polarity on the Scalability and Reproducibility of Solvent-Free Microwave-Assisted Reactions. Combinatorial Chemistry and High Throughput Screening, 2011, 14, 109-116.	1.1	12
43	Application of flow chemistry to the reduction of nitriles to aldehydes. Tetrahedron Letters, 2011, 52, 6058-6060.	1.4	28
44	Synthesis, In Vivo Occupancy, and Radiolabeling of Potent Phosphodiesterase Subtype-10 Inhibitors as Candidates for Positron Emission Tomography Imaging. Journal of Medicinal Chemistry, 2011, 54, 5820-5835.	6.4	43
45	Preclinical Evaluation of ¹⁸ F-JNJ41510417 as a Radioligand for PET Imaging of Phosphodiesterase-10A in the Brain. Journal of Nuclear Medicine, 2010, 51, 1584-1591.	5.0	64
46	Recent applications of microwave irradiation to medicinal chemistry. Future Medicinal Chemistry, 2010, 2, 169-176.	2.3	60
47	Novel Approach for Chemotype Hopping Based on Annotated Databases of Chemically Feasible Fragments and a Prospective Case Study: New Melanin Concentrating Hormone Antagonists. Journal of Medicinal Chemistry, 2009, 52, 2076-2089.	6.4	27
48	Blocking melanin-concentrating hormone MCH1 receptor affects rat sleep–wake architecture. European Journal of Pharmacology, 2008, 579, 177-188.	3.5	97
49	Applications of the Combination of Microwave and Parallel Synthesis in Medicinal Chemistry. Combinatorial Chemistry and High Throughput Screening, 2007, 10, 918-932.	1.1	14
50	Microwave Assisted Medicinal Chemistry. Mini-Reviews in Medicinal Chemistry, 2007, 7, 345-369.	2.4	25
51	Reproducibility and Scalability of Solvent-Free Microwave-Assisted Reactions:From Domestic Ovens to Controllable Parallel Applications. Combinatorial Chemistry and High Throughput Screening, 2007, 10, 163-169.	1.1	19
52	Tricyclic isoxazolines: Identification of R226161 as a potential new antidepressant that combines potent serotonin reuptake inhibition and α2-adrenoceptor antagonism. Bioorganic and Medicinal Chemistry, 2007, 15, 3649-3660.	3.0	28
53	Synthesis of 7-amino-3a,4-dihydro-3H-[1]benzopyrano[4,3-c]isoxazole derivatives displaying combined α2-adrenoceptor antagonistic and 5-HT reuptake inhibiting activities. Bioorganic and Medicinal Chemistry, 2006, 14, 4361-4372.	3.0	18
54	Reproducibility Across Microwave Instruments: Preparation of a Set of 24 Compounds on a Multiwell Plate under Temperature-Controlled Conditions ChemInform, 2005, 36, no.	0.0	0

JESUS ALCAZAR

#	Article	IF	CITATIONS
55	Novel Approach towards the Synthesis of 3,3a,4,5-Tetrahydroquinolino[4,3-c]isoxazole Derivatives: Application to the Preparation of Previously Unattainable 3a,4-Dihydroazabenzopyrano[4,3-c]isoxazole Scaffolds. Synlett, 2005, 2005, 3139-3141.	1.8	5
56	Reproducibility Across Microwave Instruments:Â Preparation of a Set of 24 Compounds on a Multiwell Plate under Temperature-Controlled Conditions. ACS Combinatorial Science, 2005, 7, 353-355.	3.3	33
57	Discovery of a New Series of Centrally Active Tricyclic Isoxazoles Combining Serotonin (5-HT) Reuptake Inhibition with α2-Adrenoceptor Blocking Activity. Journal of Medicinal Chemistry, 2005, 48, 2054-2071.	6.4	48
58	Reproducibility across Microwave Instruments: First Example of Genuine Parallel Scale up of Compounds under Microwave Irradiation. QSAR and Combinatorial Science, 2004, 23, 906-910.	1.4	25
59	Novel Analogues of 3-Substituted-2,3-dihydro-1,4-dioxino[2,3-b]pyridines: Modifications in the Dioxane Ring ChemInform, 2004, 35, no.	0.0	0
60	Synthesis of Novel 3-Substituted-2,3-dihydro-1,4-dioxino[2,3-b]pyridines as Potential New Scaffolds for Drug Discovery: Selective Introduction of Substituents on the Pyridine Ring ChemInform, 2004, 35, no.	0.0	0
61	Synthesis of 3a,4-dihydro-3H-[1]benzopyrano[4,3-c]isoxazoles, displaying combined 5-HT uptake inhibiting and α2-adrenoceptor antagonistic activities. Part 2: Further exploration on the cinnamyl moiety. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 2917-2922.	2.2	17
62	Novel analogues of 3-substituted-2,3-dihydro-1,4-dioxino[2,3-b]pyridines: modifications in the dioxane ring. Tetrahedron Letters, 2003, 44, 8545-8548.	1.4	7
63	Synthesis of novel 3-substituted-2,3-dihydro-1,4-dioxino[2,3-b]pyridines as potential new scaffolds for drug discovery: selective introduction of substituents on the pyridine ring. Tetrahedron Letters, 2003, 44, 8983-8986.	1.4	11
64	Synthesis of novel aza analogues of 2-substituted-2,3-dihydro-1,4-benzodioxins as potential new scaffolds for drug discovery. Tetrahedron Letters, 2003, 44, 2275-2277.	1.4	7
65	Synthesis of 3a,4-dihydro-3H-[1]benzopyrano[4,3-c]isoxazoles, displaying combined 5-HT uptake inhibiting and α2-adrenoceptor antagonistic activities: a novel series of potential antidepressants. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 2719-2725.	2.2	24
66	Synthesis and structure–activity relationship of 2-(aminoalkyl)-2,3,3a,8-tetrahydrodibenzo[c,f]isoxazolo[2,3-a]azepine derivatives: a novel series of 5-HT2A/2C receptor antagonists. Part 1. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 243-248.	2.2	39
67	Synthesis and structure–Activity relationship of 2-(aminoalkyl)-2,3,3a,8-tetrahydrodibenzo[c,f]isoxazolo[2,3-a]azepine derivatives: a novel series of 5-HT2A/2C receptor antagonists. Part 2. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 249-253.	2.2	8
68	Selective Synthesis of 2-, 4-, and 5-Cyano Substituted Imidazoles from Imidazole N-Oxides and Trimethylsilyl Cyanide. Journal of Organic Chemistry, 1996, 61, 6971-6973.	3.2	7
69	Synthesis of Imidazole N-Oxides in Solvent-free Conditions. Heterocycles, 1996, 43, 1465.	0.7	12
70	Synthesis of imidazole 1-oxides from 1,2-diimines. Journal of the Chemical Society Perkin Transactions 1, 1995, , 2467-2470.	0.9	15
71	Synthesis of 4-hydroxylamino-1-azabuta-1,3-dienes and their cyclization to 2-substituted pyrazole 1-oxides. Journal of the Chemical Society Perkin Transactions 1, 1995, , 2773.	0.9	12