List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/370032/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Application of frequency ratio and weights of evidence models in landslide susceptibility mapping for the Shangzhou District of Shangluo City, China. Environmental Earth Sciences, 2016, 75, 1.	1.3	766
2	A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. Catena, 2017, 151, 147-160.	2.2	637
3	A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Science of the Total Environment, 2018, 627, 744-755.	3.9	494
4	A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environmental Modelling and Software, 2017, 95, 229-245.	1.9	416
5	A comparative assessment of flood susceptibility modeling using Multi-Criteria Decision-Making Analysis and Machine Learning Methods. Journal of Hydrology, 2019, 573, 311-323.	2.3	409
6	Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Science of the Total Environment, 2019, 662, 332-346.	3.9	378
7	Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China). Catena, 2018, 163, 399-413.	2.2	367
8	Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naÃ־ve Bayes tree for landslide susceptibility modeling. Science of the Total Environment, 2018, 644, 1006-1018.	3.9	341
9	A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique. Natural Hazards, 2016, 83, 947-987.	1.6	333
10	Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution. Science of the Total Environment, 2018, 621, 1124-1141.	3.9	298
11	Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China. Science of the Total Environment, 2018, 626, 1121-1135.	3.9	296
12	Landslide susceptibility mapping using GIS-based statistical models and Remote sensing data in tropical environment. Scientific Reports, 2015, 5, 9899.	1.6	287
13	Landslide spatial modeling: Introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques. Geoderma, 2017, 305, 314-327.	2.3	280
14	Modeling flood susceptibility using data-driven approaches of naÃ ⁻ ve Bayes tree, alternating decision tree, and random forest methods. Science of the Total Environment, 2020, 701, 134979.	3.9	280
15	Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China. Science of the Total Environment, 2018, 625, 575-588.	3.9	279
16	Performance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modelling. Catena, 2017, 157, 310-324.	2.2	267
17	GIS-based groundwater potential analysis using novel ensemble weights-of-evidence with logistic regression and functional tree models. Science of the Total Environment, 2018, 634, 853-867.	3.9	245
18	Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping. Journal of Environmental Management, 2018, 217, 1-11.	3.8	231

#	Article	IF	CITATIONS
19	Landslide susceptibility modeling using Reduced Error Pruning Trees and different ensemble techniques: Hybrid machine learning approaches. Catena, 2019, 175, 203-218.	2.2	229
20	Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques. Geomorphology, 2017, 297, 69-85.	1.1	215
21	Flood susceptibility modelling using novel hybrid approach of reduced-error pruning trees with bagging and random subspace ensembles. Journal of Hydrology, 2019, 575, 864-873.	2.3	213
22	Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran. Geoscience Frontiers, 2021, 12, 505-519.	4.3	212
23	Shallow landslide susceptibility assessment using a novel hybrid intelligence approach. Environmental Earth Sciences, 2017, 76, 1.	1.3	211
24	Applying population-based evolutionary algorithms and a neuro-fuzzy system for modeling landslide susceptibility. Catena, 2019, 172, 212-231.	2.2	210
25	Flood Detection and Susceptibility Mapping Using Sentinel-1 Remote Sensing Data and a Machine Learning Approach: Hybrid Intelligence of Bagging Ensemble Based on K-Nearest Neighbor Classifier. Remote Sensing, 2020, 12, 266.	1.8	210
26	Flash flood susceptibility analysis and its mapping using different bivariate models in Iran: a comparison between Shannon's entropy, statistical index, and weighting factor models. Environmental Monitoring and Assessment, 2016, 188, 656.	1.3	202
27	Improving prediction of water quality indices using novel hybrid machine-learning algorithms. Science of the Total Environment, 2020, 721, 137612.	3.9	202
28	Meta optimization of an adaptive neuro-fuzzy inference system with grey wolf optimizer and biogeography-based optimization algorithms for spatial prediction of landslide susceptibility. Catena, 2019, 175, 430-445.	2.2	199
29	Hybrid artificial intelligence models based on a neuro-fuzzy system and metaheuristic optimization algorithms for spatial prediction of wildfire probability. Agricultural and Forest Meteorology, 2019, 266-267, 198-207.	1.9	194
30	Landslide spatial modelling using novel bivariate statistical based NaÃ ⁻ ve Bayes, RBF Classifier, and RBF Network machine learning algorithms. Science of the Total Environment, 2019, 663, 1-15.	3.9	182
31	GIS-based landslide susceptibility modelling: a comparative assessment of kernel logistic regression, Naìve-Bayes tree, and alternating decision tree models. Geomatics, Natural Hazards and Risk, 2017, 8, 950-973.	2.0	179
32	New Hybrids of ANFIS with Several Optimization Algorithms for Flood Susceptibility Modeling. Water (Switzerland), 2018, 10, 1210.	1.2	174
33	GIS-based landslide susceptibility assessment using optimized hybrid machine learning methods. Catena, 2021, 196, 104833.	2.2	171
34	Flood susceptibility mapping in Dingnan County (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm. Journal of Environmental Management, 2019, 247, 712-729.	3.8	169
35	A novel hybrid artificial intelligence approach based on the rotation forest ensemble and naÃ ⁻ ve Bayes tree classifiers for a landslide susceptibility assessment in Langao County, China. Geomatics, Natural Hazards and Risk, 2017, 8, 1955-1977.	2.0	162
36	A comparative study of landslide susceptibility maps produced using support vector machine with different kernel functions and entropy data mining models in China. Bulletin of Engineering Geology and the Environment, 2018, 77, 647-664.	1.6	161

#	Article	IF	CITATIONS
37	Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, NaÃ⁻ve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms. International Journal of Environmental Research and Public Health, 2020, 17, 2749.	1.2	159
38	Predicting uncertainty of machine learning models for modelling nitrate pollution of groundwater using quantile regression and UNEEC methods. Science of the Total Environment, 2019, 688, 855-866.	3.9	155
39	A comparison study of DRASTIC methods with various objective methods for groundwater vulnerability assessment. Science of the Total Environment, 2018, 642, 1032-1049.	3.9	151
40	Spatial prediction of groundwater potentiality using ANFIS ensembled with teaching-learning-based and biogeography-based optimization. Journal of Hydrology, 2019, 572, 435-448.	2.3	150
41	Modelling gully-erosion susceptibility in a semi-arid region, Iran: Investigation of applicability of certainty factor and maximum entropy models. Science of the Total Environment, 2019, 655, 684-696.	3.9	147
42	Novel GIS Based Machine Learning Algorithms for Shallow Landslide Susceptibility Mapping. Sensors, 2018, 18, 3777.	2.1	146
43	Mapping Groundwater Potential Using a Novel Hybrid Intelligence Approach. Water Resources Management, 2019, 33, 281-302.	1.9	145
44	A GIS-based comparative study of Dempster-Shafer, logistic regression and artificial neural network models for landslide susceptibility mapping. Geocarto International, 2017, 32, 367-385.	1.7	143
45	GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models. Catena, 2020, 195, 104777.	2.2	143
46	Landslide Susceptibility Modeling Based on GIS and Novel Bagging-Based Kernel Logistic Regression. Applied Sciences (Switzerland), 2018, 8, 2540.	1.3	140
47	Landslide Susceptibility Mapping Using Different GIS-Based Bivariate Models. Water (Switzerland), 2019, 11, 1402.	1.2	137
48	Applying Information Theory and GIS-based quantitative methods to produce landslide susceptibility maps in Nancheng County, China. Landslides, 2017, 14, 1091-1111.	2.7	136
49	Hybrid Machine Learning Approaches for Landslide Susceptibility Modeling. Forests, 2019, 10, 157.	0.9	136
50	Remote sensing and GIS-based landslide susceptibility mapping using frequency ratio, logistic regression, and fuzzy logic methods at the central Zab basin, Iran. Environmental Earth Sciences, 2015, 73, 8647-8668.	1.3	135
51	Novel hybrid artificial intelligence approach of bivariate statistical-methods-based kernel logistic regression classifier for landslide susceptibility modeling. Bulletin of Engineering Geology and the Environment, 2019, 78, 4397-4419.	1.6	135
52	Quantifying hourly suspended sediment load using data mining models: Case study of a glacierized Andean catchment in Chile. Journal of Hydrology, 2018, 567, 165-179.	2.3	133
53	Landslide susceptibility modeling based on ANFIS with teaching-learning-based optimization and Satin bowerbird optimizer. Geoscience Frontiers, 2021, 12, 93-107.	4.3	133
54	Landslide Susceptibility Assessment by Novel Hybrid Machine Learning Algorithms. Sustainability, 2019, 11, 4386.	1.6	130

#	Article	IF	CITATIONS
55	Groundwater spring potential modelling: Comprising the capability and robustness of three different modeling approaches. Journal of Hydrology, 2018, 565, 248-261.	2.3	129
56	Spatial Prediction of Landslide Susceptibility Using GIS-Based Data Mining Techniques of ANFIS with Whale Optimization Algorithm (WOA) and Grey Wolf Optimizer (GWO). Applied Sciences (Switzerland), 2019, 9, 3755.	1.3	129
57	Novel Hybrid Evolutionary Algorithms for Spatial Prediction of Floods. Scientific Reports, 2018, 8, 15364.	1.6	124
58	Flood Spatial Modeling in Northern Iran Using Remote Sensing and GIS: A Comparison between Evidential Belief Functions and Its Ensemble with a Multivariate Logistic Regression Model. Remote Sensing, 2019, 11, 1589.	1.8	124
59	Landslide Susceptibility Modeling Using Integrated Ensemble Weights of Evidence with Logistic Regression and Random Forest Models. Applied Sciences (Switzerland), 2019, 9, 171.	1.3	124
60	Spatial prediction of groundwater spring potential mapping based on an adaptive neuro-fuzzy inference system and metaheuristic optimization. Hydrology and Earth System Sciences, 2018, 22, 4771-4792.	1.9	122
61	Spatial prediction of landslide susceptibility using data mining-based kernel logistic regression, naive Bayes and RBFNetwork models for the Long County area (China). Bulletin of Engineering Geology and the Environment, 2019, 78, 247-266.	1.6	122
62	Landslide Detection and Susceptibility Mapping by AIRSAR Data Using Support Vector Machine and Index of Entropy Models in Cameron Highlands, Malaysia. Remote Sensing, 2018, 10, 1527.	1.8	121
63	Landslide Susceptibility Evaluation and Management Using Different Machine Learning Methods in The Gallicash River Watershed, Iran. Remote Sensing, 2020, 12, 475.	1.8	121
64	Land Subsidence Susceptibility Mapping in South Korea Using Machine Learning Algorithms. Sensors, 2018, 18, 2464.	2.1	120
65	A hybrid fuzzy weight of evidence method in landslide susceptibility analysis on the Wuyuan area, China. Geomorphology, 2017, 290, 1-16.	1.1	115
66	Novel Hybrid Integration Approach of Bagging-Based Fisher's Linear Discriminant Function for Groundwater Potential Analysis. Natural Resources Research, 2019, 28, 1239-1258.	2.2	113
67	Groundwater spring potential mapping using population-based evolutionary algorithms and data mining methods. Science of the Total Environment, 2019, 684, 31-49.	3.9	110
68	A Hybrid GIS Multi-Criteria Decision-Making Method for Flood Susceptibility Mapping at Shangyou, China. Remote Sensing, 2019, 11, 62.	1.8	110
69	Uncertainties of prediction accuracy in shallow landslide modeling: Sample size and raster resolution. Catena, 2019, 178, 172-188.	2.2	107
70	A novel hybrid integration model using support vector machines and random subspace for weather-triggered landslide susceptibility assessment in the Wuning area (China). Environmental Earth Sciences, 2017, 76, 1.	1.3	105
71	A novel hybrid approach of Bayesian Logistic Regression and its ensembles for landslide susceptibility assessment. Geocarto International, 2019, 34, 1427-1457.	1.7	105
72	Meteorological data mining and hybrid data-intelligence models for reference evaporation simulation: A case study in Iraq. Computers and Electronics in Agriculture, 2019, 167, 105041.	3.7	105

#	Article	IF	CITATIONS
73	A comparative study between popular statistical and machine learning methods for simulating volume of landslides. Catena, 2017, 157, 213-226.	2.2	104
74	Comparison of four kernel functions used in support vector machines for landslide susceptibility mapping: a case study at Suichuan area (China). Geomatics, Natural Hazards and Risk, 2017, 8, 544-569.	2.0	100
75	Spatial prediction of landslide susceptibility by combining evidential belief function, logistic regression and logistic model tree. Geocarto International, 2019, 34, 1177-1201.	1.7	99
76	Optimization of Computational Intelligence Models for Landslide Susceptibility Evaluation. Remote Sensing, 2020, 12, 2180.	1.8	99
77	Evaluating the usage of tree-based ensemble methods in groundwater spring potential mapping. Journal of Hydrology, 2020, 583, 124602.	2.3	98
78	Comparison of machine learning models for gully erosion susceptibility mapping. Geoscience Frontiers, 2020, 11, 1609-1620.	4.3	96
79	Flash flood susceptibility mapping using a novel deep learning model based on deep belief network, back propagation and genetic algorithm. Geoscience Frontiers, 2021, 12, 101100.	4.3	95
80	Prioritization of landslide conditioning factors and its spatial modeling in Shangnan County, China using GIS-based data mining algorithms. Bulletin of Engineering Geology and the Environment, 2018, 77, 611-629.	1.6	94
81	Landslide susceptibility assessment at the Wuning area, China: a comparison between multi-criteria decision making, bivariate statistical and machine learning methods. Natural Hazards, 2019, 96, 173-212.	1.6	94
82	A novel ensemble approach of bivariate statistical-based logistic model tree classifier for landslide susceptibility assessment. Geocarto International, 2018, 33, 1398-1420.	1.7	93
83	GIS-Based Machine Learning Algorithms for Gully Erosion Susceptibility Mapping in a Semi-Arid Region of Iran. Remote Sensing, 2020, 12, 2478.	1.8	92
84	Shallow Landslide Prediction Using a Novel Hybrid Functional Machine Learning Algorithm. Remote Sensing, 2019, 11, 931.	1.8	90
85	New Ensemble Models for Shallow Landslide Susceptibility Modeling in a Semi-Arid Watershed. Forests, 2019, 10, 743.	0.9	89
86	A comparison of Support Vector Machines and Bayesian algorithms for landslide susceptibility modelling. Geocarto International, 2019, 34, 1385-1407.	1.7	88
87	Flash flood susceptibility modelling using functional tree and hybrid ensemble techniques. Journal of Hydrology, 2020, 587, 125007.	2.3	88
88	Convolutional neural network approach for spatial prediction of flood hazard at national scale of Iran. Journal of Hydrology, 2020, 591, 125552.	2.3	87
89	Shallow Landslide Susceptibility Mapping by Random Forest Base Classifier and Its Ensembles in a Semi-Arid Region of Iran. Forests, 2020, 11, 421.	0.9	87
90	A Novel Ensemble Artificial Intelligence Approach for Gully Erosion Mapping in a Semi-Arid Watershed (Iran). Sensors, 2019, 19, 2444.	2.1	86

#	Article	IF	CITATIONS
91	Application and Comparison of Decision Tree-Based Machine Learning Methods in Landside Susceptibility Assessment at Pauri Garhwal Area, Uttarakhand, India. Environmental Processes, 2017, 4, 711-730.	1.7	85
92	GIS-based landslide susceptibility mapping using analytical hierarchy process (AHP) and certainty factor (CF) models for the Baozhong region of Baoji City, China. Environmental Earth Sciences, 2016, 75, 1.	1.3	84
93	A Novel Integrated Approach of Relevance Vector Machine Optimized by Imperialist Competitive Algorithm for Spatial Modeling of Shallow Landslides. Remote Sensing, 2018, 10, 1538.	1.8	84
94	Landslide Susceptibility Mapping Using Machine Learning Algorithms and Remote Sensing Data in a Tropical Environment. International Journal of Environmental Research and Public Health, 2020, 17, 4933.	1.2	84
95	Convolutional neural network (CNN) with metaheuristic optimization algorithms for landslide susceptibility mapping in Icheon, South Korea. Journal of Environmental Management, 2022, 305, 114367.	3.8	82
96	The potential of novel data mining models for global solar radiation prediction. International Journal of Environmental Science and Technology, 2019, 16, 7147-7164.	1.8	81
97	Evaluation of different boosting ensemble machine learning models and novel deep learning and boosting framework for head-cut gully erosion susceptibility. Journal of Environmental Management, 2021, 284, 112015.	3.8	80
98	Groundwater Spring Potential Mapping Using Artificial Intelligence Approach Based on Kernel Logistic Regression, Random Forest, and Alternating Decision Tree Models. Applied Sciences (Switzerland), 2020, 10, 425.	1.3	79
99	Social Vulnerability Assessment Using Artificial Neural Network (ANN) Model for Earthquake Hazard in Tabriz City, Iran. Sustainability, 2018, 10, 3376.	1.6	78
100	GIS-Based Gully Erosion Susceptibility Mapping: A Comparison of Computational Ensemble Data Mining Models. Applied Sciences (Switzerland), 2020, 10, 2039.	1.3	78
101	Drought sensitivity mapping using two one-class support vector machine algorithms. Atmospheric Research, 2017, 193, 73-82.	1.8	77
102	Optimization of an adaptive neuro-fuzzy inference system for groundwater potential mapping. Hydrogeology Journal, 2019, 27, 2511-2534.	0.9	76
103	GIS-Based Evaluation of Landslide Susceptibility Models Using Certainty Factors and Functional Trees-Based Ensemble Techniques. Applied Sciences (Switzerland), 2020, 10, 16.	1.3	75
104	Landslide Susceptibility Evaluation Using Hybrid Integration of Evidential Belief Function and Machine Learning Techniques. Water (Switzerland), 2020, 12, 113.	1.2	74
105	Uncertainty pattern in landslide susceptibility prediction modelling: Effects of different landslide boundaries and spatial shape expressions. Geoscience Frontiers, 2022, 13, 101317.	4.3	74
106	River suspended sediment load prediction based on river discharge information: application of newly developed data mining models. Hydrological Sciences Journal, 2020, 65, 624-637.	1.2	72
107	Fuzzy Shannon Entropy: A Hybrid GIS-Based Landslide Susceptibility Mapping Method. Entropy, 2016, 18, 343.	1.1	70
108	Hybrid Integration Approach of Entropy with Logistic Regression and Support Vector Machine for Landslide Susceptibility Modeling. Entropy, 2018, 20, 884.	1.1	67

#	Article	IF	CITATIONS
109	Rock fall susceptibility assessment along a mountainous road: an evaluation of bivariate statistic, analytical hierarchy process and frequency ratio. Environmental Earth Sciences, 2017, 76, 1.	1.3	66
110	River Water Salinity Prediction Using Hybrid Machine Learning Models. Water (Switzerland), 2020, 12, 2951.	1.2	66
111	Application of frequency ratio, weights of evidence and evidential belief function models in landslide susceptibility mapping. Geocarto International, 0, , 1-21.	1.7	65
112	Determination of compound channel apparent shear stress: application of novel data mining models. Journal of Hydroinformatics, 2019, 21, 798-811.	1.1	65
113	Urban flood modeling using deep-learning approaches in Seoul, South Korea. Journal of Hydrology, 2021, 601, 126684.	2.3	65
114	A Hybrid Computational Intelligence Approach to Groundwater Spring Potential Mapping. Water (Switzerland), 2019, 11, 2013.	1.2	64
115	Sinkhole susceptibility mapping: A comparison between Bayesâ€based machine learning algorithms. Land Degradation and Development, 2019, 30, 730-745.	1.8	63
116	Novel Entropy and Rotation Forest-Based Credal Decision Tree Classifier for Landslide Susceptibility Modeling. Entropy, 2019, 21, 106.	1.1	61
117	Performance Evaluation of Sentinel-2 and Landsat 8 OLI Data for Land Cover/Use Classification Using a Comparison between Machine Learning Algorithms. Remote Sensing, 2021, 13, 1349.	1.8	61
118	Deep learning neural networks for spatially explicit prediction of flash flood probability. Geoscience Frontiers, 2021, 12, 101076.	4.3	60
119	Development of a Novel Hybrid Intelligence Approach for Landslide Spatial Prediction. Applied Sciences (Switzerland), 2019, 9, 2824.	1.3	58
120	Spatial modelling of gully headcuts using UAV data and four best-first decision classifier ensembles (BFTree, Bag-BFTree, RS-BFTree, and RF-BFTree). Geomorphology, 2019, 329, 184-193.	1.1	58
121	Enhancing nitrate and strontium concentration prediction in groundwater by using new data mining algorithm. Science of the Total Environment, 2020, 715, 136836.	3.9	58
122	Landslide Detection and Susceptibility Modeling on Cameron Highlands (Malaysia): A Comparison between Random Forest, Logistic Regression and Logistic Model Tree Algorithms. Forests, 2020, 11, 830.	0.9	57
123	Hybrid Computational Intelligence Methods for Landslide Susceptibility Mapping. Symmetry, 2020, 12, 325.	1.1	56
124	Torrential rainfall-triggered shallow landslide characteristics and susceptibility assessment using ensemble data-driven models in the Dongjiang Reservoir Watershed, China. Natural Hazards, 2019, 97, 579-609.	1.6	55
125	Bedload transport rate prediction: Application of novel hybrid data mining techniques. Journal of Hydrology, 2020, 585, 124774.	2.3	55
126	Evaluation efficiency of hybrid deep learning algorithms with neural network decision tree and boosting methods for predicting groundwater potential. Geocarto International, 2022, 37, 5564-5584.	1.7	54

#	Article	IF	CITATIONS
127	Flood spatial prediction modeling using a hybrid of meta-optimization and support vector regression modeling. Catena, 2021, 199, 105114.	2.2	53
128	Towards an Ensemble Machine Learning Model of Random Subspace Based Functional Tree Classifier for Snow Avalanche Susceptibility Mapping. IEEE Access, 2020, 8, 145968-145983.	2.6	50
129	Comparison of Support Vector Machine, Bayesian Logistic Regression, and Alternating Decision Tree Algorithms for Shallow Landslide Susceptibility Mapping along a Mountainous Road in the West of Iran. Applied Sciences (Switzerland), 2020, 10, 5047.	1.3	50
130	Mapping of Groundwater Spring Potential in Karst Aquifer System Using Novel Ensemble Bivariate and Multivariate Models. Water (Switzerland), 2020, 12, 985.	1.2	50
131	Spatial Prediction of Landslides Using Hybrid Integration of Artificial Intelligence Algorithms with Frequency Ratio and Index of Entropy in Nanzheng County, China. Applied Sciences (Switzerland), 2020, 10, 29.	1.3	48
132	Performance Evaluation of GIS-Based Artificial Intelligence Approaches for Landslide Susceptibility Modeling and Spatial Patterns Analysis. ISPRS International Journal of Geo-Information, 2020, 9, 443.	1.4	45
133	Spatial prediction of landslide susceptibility using integrated frequency ratio with entropy and support vector machines by different kernel functions. Environmental Earth Sciences, 2016, 75, 1.	1.3	43
134	SEVUCAS: A Novel GIS-Based Machine Learning Software for Seismic Vulnerability Assessment. Applied Sciences (Switzerland), 2019, 9, 3495.	1.3	42
135	Daily Water Level Prediction of Zrebar Lake (Iran): A Comparison between M5P, Random Forest, Random Tree and Reduced Error Pruning Trees Algorithms. ISPRS International Journal of Geo-Information, 2020, 9, 479.	1.4	42
136	Spatial Prediction of Landslide Susceptibility Based on GIS and Discriminant Functions. ISPRS International Journal of Geo-Information, 2020, 9, 144.	1.4	42
137	Multi-Criteria Decision Making (MCDM) Model for Seismic Vulnerability Assessment (SVA) of Urban Residential Buildings. ISPRS International Journal of Geo-Information, 2018, 7, 444.	1.4	41
138	Big data in Geohazard; pattern mining and large scale analysis of landslides in Iran. Earth Science Informatics, 2019, 12, 1-17.	1.6	41
139	Modeling Spatial Flood using Novel Ensemble Artificial Intelligence Approaches in Northern Iran. Remote Sensing, 2020, 12, 3423.	1.8	41
140	A comparative study on groundwater spring potential analysis based on statistical index, index of entropy and certainty factors models. Geocarto International, 2018, 33, 754-769.	1.7	39
141	Hybridized neural fuzzy ensembles for dust source modeling and prediction. Atmospheric Environment, 2020, 224, 117320.	1.9	39
142	Swarm intelligence optimization of the group method of data handling using the cuckoo search and whale optimization algorithms to model and predict landslides. Applied Soft Computing Journal, 2022, 116, 108254.	4.1	39
143	A Novel Intelligence Approach of a Sequential Minimal Optimization-Based Support Vector Machine for Landslide Susceptibility Mapping. Sustainability, 2019, 11, 6323.	1.6	37
144	Uncertainties Analysis of Collapse Susceptibility Prediction Based on Remote Sensing and GIS: Influences of Different Data-Based Models and Connections between Collapses and Environmental Factors. Remote Sensing, 2020, 12, 4134.	1.8	37

#	Article	IF	CITATIONS
145	Monitoring and Assessment of Water Level Fluctuations of the Lake Urmia and Its Environmental Consequences Using Multitemporal Landsat 7 ETM+ Images. International Journal of Environmental Research and Public Health, 2020, 17, 4210.	1.2	37
146	Using Optimized Deep Learning to Predict Daily Streamflow: A Comparison to Common Machine Learning Algorithms. Water Resources Management, 2022, 36, 699-716.	1.9	37
147	Toward the development of deep learning analyses for snow avalanche releases in mountain regions. Geocarto International, 2022, 37, 7855-7880.	1.7	36
148	Hybrid Computational Intelligence Models for Improvement Gully Erosion Assessment. Remote Sensing, 2020, 12, 140.	1.8	33
149	Landslide prediction capability by comparison of frequency ratio, fuzzy gamma and landslide index method. Journal of Earth System Science, 2019, 128, 1.	0.6	32
150	Development of an Artificial Intelligence Approach for Prediction of Consolidation Coefficient of Soft Soil: A Sensitivity Analysis. Open Construction and Building Technology Journal, 2019, 13, 178-188.	0.3	32
151	Improving groundwater potential mapping using metaheuristic approaches. Hydrological Sciences Journal, 2020, 65, 2729-2749.	1.2	31
152	Iterative classifier optimizer-based pace regression and random forest hybrid models for suspended sediment load prediction. Environmental Science and Pollution Research, 2021, 28, 11637-11649.	2.7	31
153	A Robust Deep-Learning Model for Landslide Susceptibility Mapping: A Case Study of Kurdistan Province, Iran. Sensors, 2022, 22, 1573.	2.1	31
154	Gully Head-Cut Distribution Modeling Using Machine Learning Methods—A Case Study of N.W. Iran. Water (Switzerland), 2020, 12, 16.	1.2	30
155	Stochastic Modeling of Groundwater Fluoride Contamination: Introducing Lazy Learners. Ground Water, 2020, 58, 723-734.	0.7	29
156	Flood Detection and Susceptibility Mapping Using Sentinel-1 Time Series, Alternating Decision Trees, and Bag-ADTree Models. Complexity, 2020, 2020, 1-21.	0.9	29
157	Monthly suspended sediment load prediction using artificial intelligence: testing of a new random subspace method. Hydrological Sciences Journal, 2020, 65, 2116-2127.	1.2	29
158	A novel ensemble learning based on Bayesian Belief Network coupled with an extreme learning machine for flash flood susceptibility mapping. Engineering Applications of Artificial Intelligence, 2020, 96, 103971.	4.3	29
159	Improving daily stochastic streamflow prediction: comparison of novel hybrid data-mining algorithms. Hydrological Sciences Journal, 2021, 66, 1457-1474.	1.2	29
160	Debris flows modeling using geo-environmental factors: developing hybridized deep-learning algorithms. Geocarto International, 2022, 37, 5150-5173.	1.7	24
161	Cumulative infiltration and infiltration rate prediction using optimized deep learning algorithms: A study in Western Iran. Journal of Hydrology: Regional Studies, 2021, 35, 100825.	1.0	24
162	The performance quality of LR, SVM, and RF for earthquake-induced landslides susceptibility mapping incorporating remote sensing imagery. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	23

#	Article	IF	CITATIONS
163	A comparison between advanced hybrid machine learning algorithms and empirical equations applied to abutment scour depth prediction. Journal of Hydrology, 2021, 596, 126100.	2.3	23
164	Flood susceptibility mapping at Ningdu catchment, China using bivariate and data mining techniques. , 2019, , 419-434.		22
165	A Hybrid Intelligence Approach to Enhance the Prediction Accuracy of Local Scour Depth at Complex Bridge Piers. Sustainability, 2020, 12, 1063.	1.6	22
166	A GIS-based groundwater pollution potential using DRASTIC, modified DRASTIC, and bivariate statistical models. Environmental Science and Pollution Research, 2021, 28, 50525-50541.	2.7	20
167	Sentinelâ€1 remote sensing data and Hydrologic Engineering Centres River Analysis System twoâ€dimensional integration for flash flood detection and modelling in New Cairo City, Egypt. Journal of Flood Risk Management, 2021, 14, e12692.	1.6	19
168	New hybrid-based approach for improving the accuracy of coastal aquifer vulnerability assessment maps. Science of the Total Environment, 2021, 767, 145416.	3.9	19
169	Analysis and prediction of meteorological drought using SPI index and ARIMA model in the Karkheh River Basin, Iran. , 2019, , 343-353.		18
170	Coastal Wetland Mapping with Sentinel-2 MSI Imagery Based on Gravitational Optimized Multilayer Perceptron and Morphological Attribute Profiles. Remote Sensing, 2019, 11, 952.	1.8	18
171	Predictive modeling of selected trace elements in groundwater using hybrid algorithms of iterative classifier optimizer. Journal of Contaminant Hydrology, 2021, 242, 103849.	1.6	16
172	Hybrids of Support Vector Regression with Grey Wolf Optimizer and Firefly Algorithm for Spatial Prediction of Landslide Susceptibility. Remote Sensing, 2021, 13, 4966.	1.8	16
173	Suspended sediment load modeling using advanced hybrid rotation forest based elastic network approach. Journal of Hydrology, 2022, 610, 127963.	2.3	15
174	Performance Evaluation and Comparison of Bivariate Statistical-Based Artificial Intelligence Algorithms for Spatial Prediction of Landslides. ISPRS International Journal of Geo-Information, 2020, 9, 696.	1.4	14
175	The Importance of Incorporating Denitrification in the Assessment of Groundwater Vulnerability. Applied Sciences (Switzerland), 2020, 10, 2328.	1.3	13
176	Weighted instances handler wrapper and rotation forest-based hybrid algorithms for sediment transport modeling. Journal of Hydrology, 2021, 598, 126452.	2.3	12
177	Landslide susceptibility modeling based on remote sensing data and data mining techniques. Environmental Earth Sciences, 2022, 81, 1.	1.3	12
178	A comparison study on the quantitative statistical methods for spatial prediction of shallow landslides (case study: Yozidar-Degaga Route in Kurdistan Province, Iran). Environmental Earth Sciences, 2022, 81, 1.	1.3	12
179	Short-term River streamflow modeling using Ensemble-based additive learner approach. Journal of Hydro-Environment Research, 2021, 39, 81-91.	1.0	10
180	Study on recognition of mine water sources based on statistical analysis. Arabian Journal of Geosciences, 2020, 13, 1.	0.6	9

#	Article	IF	CITATIONS
181	Predicting stable gravel-bed river hydraulic geometry: A test of novel, advanced, hybrid data mining algorithms. Environmental Modelling and Software, 2021, 144, 105165.	1.9	9
182	Flash flood susceptibility mapping using stacking ensemble machine learning models. Geocarto International, 2024, 37, 15010-15036.	1.7	9
183	Dam break analysis and flood inundation mapping: The case study of Sefid-Roud Dam, Iran. , 2019, , 395-405.		8
184	Uniform and graded bed-load sediment transport in a degrading channel with non-equilibrium conditions. International Journal of Sediment Research, 2020, 35, 115-124.	1.8	7
185	Shear stress distribution prediction in symmetric compound channels using data mining and machine learning models. Frontiers of Structural and Civil Engineering, 2020, 14, 1097-1109.	1.2	7
186	Clear-water scour depth prediction in long channel contractions: Application of new hybrid machine learning algorithms. Ocean Engineering, 2021, 238, 109721.	1.9	6
187	Application of a Novel Hybrid Machine Learning Algorithm in Shallow Landslide Susceptibility Mapping in a Mountainous Area. Frontiers in Environmental Science, 0, 10, .	1.5	6
188	A laboratory investigation of bed-load transport of gravel sediments under dam break flow. International Journal of Sediment Research, 2021, 36, 229-234.	1.8	5
189	Landslide susceptibility modeling based on GIS and ensemble techniques. Arabian Journal of Geosciences, 2022, 15, 1.	0.6	4
190	A country-wide assessment of Iran's land subsidence susceptibility using satellite-based InSAR and machine learning. Geocarto International, 2022, 37, 14065-14087.	1.7	4
191	Experimental Analysis of Incipient Motion for Uniform and Graded Sediments. Water (Switzerland), 2021, 13, 1874.	1.2	3
192	Difference in the bed load transport of graded and uniform sediments during floods: An experimental investigation. Hydrology Research, 2019, 50, 1645-1664.	1.1	2
193	Intelligent flow discharge computation in a rectangular channel with free overfall condition. Neural Computing and Applications, 2022, 34, 12601-12616.	3.2	2
194	Multi-step ahead soil temperature forecasting at different depths based on meteorological data: Integrating resampling algorithms and machine learning models. Pedosphere, 2023, 33, 479-495.	2.1	2
195	Evaluation of deep machine learning-based models of soil cumulative infiltration. Earth Science Informatics, 2022, 15, 1861-1877.	1.6	2
196	Stacking ensemble-based hybrid algorithms for discharge computation in sharp-crested labyrinth weirs. Soft Computing, 0, , 1.	2.1	1
197	Towards robust smart data-driven soil erodibility index prediction under different scenarios. Geocarto International, 2022, 37, 13176-13209.	1.7	1
198	Comparing the Soil Conservation Service model with new machine learning algorithms for predicting cumulative infiltration in semi-arid regions. Pedosphere, 2022, 32, 718-732.	2.1	1