Cong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3700284/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of simulated gastrointestinal digestion in vitro on the chemical properties, antioxidant activity, α-amylase and α-glucosidase inhibitory activity of polysaccharides from Inonotus obliquus. Food Research International, 2018, 103, 280-288.	6.2	138
2	Interaction characterization of preheated soy protein isolate with cyanidin-3-O-glucoside and their effects on the stability of black soybean seed coat anthocyanins extracts. Food Chemistry, 2019, 271, 266-273.	8.2	128
3	Physicochemical properties and antidiabetic effects of a polysaccharide from corn silk in high-fat diet and streptozotocin-induced diabetic mice. Carbohydrate Polymers, 2017, 164, 370-378.	10.2	114
4	Preparation, Characterization and Application of Polysaccharide-Based Metallic Nanoparticles: A Review. Polymers, 2017, 9, 689.	4.5	110
5	Hypoglycemic and hypolipidemic effects of anthocyanins extract from black soybean seed coat in high fat diet and streptozotocin-induced diabetic mice. Food and Function, 2018, 9, 426-439.	4.6	104
6	Anti-diabetic effects of Inonotus obliquus polysaccharides in streptozotocin-induced type 2 diabetic mice and potential mechanism via PI3K-Akt signal pathway. Biomedicine and Pharmacotherapy, 2017, 95, 1669-1677.	5.6	97
7	Network Pharmacology Studies on the Bioactive Compounds and Action Mechanisms of Natural Products for the Treatment of Diabetes Mellitus: A Review. Frontiers in Pharmacology, 2017, 08, 74.	3.5	85
8	Anti-diabetic effects of Inonotus obliquus polysaccharides-chromium (III) complex in type 2 diabetic mice and its sub-acute toxicity evaluation in normal mice. Food and Chemical Toxicology, 2017, 108, 498-509.	3.6	76
9	Effects of polysaccharides from Inonotus obliquus and its chromium (III) complex on advanced glycation end-products formation, α-amylase, α-glucosidase activity and H2O2-induced oxidative damage in hepatic L02†cells. Food and Chemical Toxicology, 2018, 116, 335-345.	3.6	41
10	Physicochemical characterisation and αâ€amylase inhibitory activity of tea polysaccharides under simulated salivary, gastric and intestinal conditions. International Journal of Food Science and Technology, 2018, 53, 423-429.	2.7	35
11	Effects of N-trans-feruloyltyramine isolated from laba garlic on antioxidant, cytotoxic activities and H2O2-induced oxidative damage in HepG2 and L02†cells. Food and Chemical Toxicology, 2019, 130, 130-141.	3.6	35
12	Peptidomic Investigation of the Interplay between Enzymatic Tenderization and the Digestibility of Beef Semimembranosus Proteins. Journal of Agricultural and Food Chemistry, 2020, 68, 1136-1146.	5.2	35
13	Preparation, characterization of polysaccharides fractions from Inonotus obliquus and their effects on α-amylase, α-glucosidase activity and H2O2-induced oxidative damage in hepatic LO2 cells. Journal of Functional Foods, 2018, 48, 179-189.	3.4	26
14	Application of preheating treatment in up- and down-regulating the glycation process of dietary proteins. Food Hydrocolloids, 2020, 98, 105264.	10.7	26
15	Shrimp shell wastes: Optimization of peptide hydrolysis and peptide inhibition of α-amylase. Food Bioscience, 2018, 25, 52-60.	4.4	24
16	Ball milling improves extractability and antioxidant properties of the active constituents of mushroom <i>Inonotus obliquus</i> powders. International Journal of Food Science and Technology, 2016, 51, 2193-2200.	2.7	18
17	Effect of extrusion on physicochemical properties, functional properties and antioxidant activities of shrimp shell wastes protein. International Journal of Biological Macromolecules, 2019, 136, 1096-1105.	7.5	18
18	Preparation and characterization of shrimp shell waste protein-based films modified with oolong tea, corn silk and black soybean seed coat extracts. Polymer Testing, 2020, 81, 106235.	4.8	16

CONG WANG

#	Article	IF	CITATIONS
19	Analysis of Salt-Tolerance Genes in Zygosaccharomyces rouxii. Applied Biochemistry and Biotechnology, 2013, 170, 1417-1425.	2.9	15
20	Draft genome sequence of <i>Candida versatilis</i> and osmotolerance analysis in soy sauce fermentation. Journal of the Science of Food and Agriculture, 2019, 99, 3168-3175.	3.5	12
21	Genome sequence of <i>Candida versatilis</i> and comparative analysis with other yeast. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 1131-1138.	3.0	8
22	Construction of ploidy series of <i>Saccharomyces cerevisiae</i> by the plasmid YCplac33-GHK. Journal of Industrial Microbiology and Biotechnology, 2013, 40, 393-397.	3.0	5
23	Interplay between Residual Protease Activity in Commercial Lactases and the Subsequent Digestibility of β-Casein in a Model System. Molecules, 2019, 24, 2876.	3.8	5
24	<i><scp>T</scp>orulopsis versatilis</i> strains with increased salt tolerance carry mutations in the glycerol transporter gene <i><scp>FPS</scp>1</i> . International Journal of Food Science and Technology, 2014, 49, 673-678.	2.7	1