Kisuk Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3700083/publications.pdf

Version: 2024-02-01

201385 205818 3,320 46 27 48 h-index citations g-index papers 51 51 51 5418 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Fungal brain infection modelled in a human-neurovascular-unit-on-a-chip with a functional blood–brain barrier. Nature Biomedical Engineering, 2021, 5, 830-846.	11.6	83
2	A therapeutic convection \hat{s} enhanced macroencapsulation device for enhancing \hat{l}^2 cell viability and insulin secretion. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	29
3	A 3D culture platform enables development of zinc-binding prodrugs for targeted proliferation of \hat{l}^2 cells. Science Advances, 2020, 6, .	4.7	22
4	Overcoming the translational barriers of tissue adhesives. Nature Reviews Materials, 2020, 5, 310-329.	23.3	213
5	Magnetic Control of Axon Navigation in Reprogrammed Neurons. Nano Letters, 2019, 19, 6517-6523.	4.5	22
6	Endothelial-neurosphere crosstalk in microwell arrays regulates self-renewal and differentiation of human neural stem cells. Journal of Industrial and Engineering Chemistry, 2019, 74, 148-157.	2.9	6
7	A resistance-sensing mechanical injector for the precise delivery of liquids to target tissue. Nature Biomedical Engineering, 2019, 3, 621-631.	11.6	15
8	Ferritin nanoparticles for improved self-renewal and differentiation of human neural stem cells. Biomaterials Research, 2018, 22, 5.	3.2	16
9	Strong contact coupling of neuronal growth cones with height-controlled vertical silicon nanocolumns. Nano Research, 2018, 11, 2532-2543.	5.8	17
10	Biodegradable Nerve Guidance Conduit with Microporous and Micropatterned Poly(lacticâ€ <i>co</i> â€glycolic acid)â€Accelerated Sciatic Nerve Regeneration. Macromolecular Bioscience, 2018, 18, e1800290.	2.1	29
11	Enhanced Selfâ€Renewal and Accelerated Differentiation of Human Fetal Neural Stem Cells Using Graphene Oxide Nanoparticles. Macromolecular Bioscience, 2017, 17, 1600540.	2.1	19
12	Plant Flavonoid-Mediated Multifunctional Surface Modification Chemistry: Catechin Coating for Enhanced Osteogenesis of Human Stem Cells. Chemistry of Materials, 2017, 29, 4375-4384.	3.2	56
13	Fluorescence-coded DNA Nanostructure Probe System to Enable Discrimination of Tumor Heterogeneity via a Screening of Dual Intracellular microRNA Signatures in situ. Scientific Reports, 2017, 7, 13499.	1.6	5
14	In Situ Bone Tissue Engineering With an Endogenous Stem Cell Mobilizer and Osteoinductive Nanofibrous Polymeric Scaffolds. Biotechnology Journal, 2017, 12, 1700062.	1.8	30
15	Three-Dimensional Electroconductive Hyaluronic Acid Hydrogels Incorporated with Carbon Nanotubes and Polypyrrole by Catechol-Mediated Dispersion Enhance Neurogenesis of Human Neural Stem Cells. Biomacromolecules, 2017, 18, 3060-3072.	2.6	144
16	Electroconductive nanoscale topography for enhanced neuronal differentiation and electrophysiological maturation of human neural stem cells. Nanoscale, 2017, 9, 18737-18752.	2.8	72
17	Photoactive Poly(3-hexylthiophene) Nanoweb for Optoelectrical Stimulation to Enhance Neurogenesis of Human Stem Cells. Theranostics, 2017, 7, 4591-4604.	4.6	31
18	Catechol-Functionalized Hyaluronic Acid Hydrogels Enhance Angiogenesis and Osteogenesis of Human Adipose-Derived Stem Cells in Critical Tissue Defects. Biomacromolecules, 2016, 17, 1939-1948.	2.6	113

#	Article	IF	Citations
19	Mussel Adhesionâ€Inspired Reverse Transfection Platform Enhances Osteogenic Differentiation and Bone Formation of Human Adiposeâ€Derived Stem Cells. Small, 2016, 12, 6266-6278.	5.2	25
20	Nanostructured Tendon-Derived Scaffolds for Enhanced Bone Regeneration by Human Adipose-Derived Stem Cells. ACS Applied Materials & Stem Cells. ACS According to the Stem Cells. ACCORDING TO the Stem Cel	4.0	33
21	Polypyrrole/Alginate Hybrid Hydrogels: Electrically Conductive and Soft Biomaterials for Human Mesenchymal Stem Cell Culture and Potential Neural Tissue Engineering Applications. Macromolecular Bioscience, 2016, 16, 1653-1661.	2.1	133
22	Photoactivation of Noncovalently Assembled Peptide Ligands on Carbon Nanotubes Enables the Dynamic Regulation of Stem Cell Differentiation. ACS Applied Materials & Dynamic Regulation of Stem Cell Differentiation. ACS Applied Materials & Dynamic Regulation of Stem Cell Differentiation. ACS Applied Materials & Dynamic Regulation of Stem Cell Differentiation. ACS Applied Materials & Dynamic Regulation of Stem Cell Differentiation. ACS Applied Materials & Dynamic Regulation of Stem Cell Differentiation. ACS Applied Materials & Dynamic Regulation of Stem Cell Differentiation. ACS Applied Materials & Dynamic Regulation of Stem Cell Differentiation. ACS Applied Materials & Dynamic Regulation of Stem Cell Differentiation. ACS Applied Materials & Dynamic Regulation of Stem Cell Differentiation. ACS Applied Materials & Dynamic Regulation of Stem Cell Differentiation. ACS Applied Materials & Dynamic Regulation of Stem Cell Differentiation. ACS Applied Materials & Dynamic Regulation of Stem Cell Differentiation. ACS Applied Materials & Dynamic Regulation of Stem Cell Differentiation of Stem Cell Differentiation. ACS Applied Materials & Dynamic Regulation of Stem Cell Differentiation of Stem Cell Di	4.0	22
23	Graphene Oxide Hierarchical Patterns for the Derivation of Electrophysiologically Functional Neuron-like Cells from Human Neural Stem Cells. ACS Applied Materials & Samp; Interfaces, 2016, 8, 17763-17774.	4.0	81
24	Tissue Reconstruction: Tissue Adhesive Catecholâ€Modified Hyaluronic Acid Hydrogel for Effective, Minimally Invasive Cell Therapy (Adv. Funct. Mater. 25/2015). Advanced Functional Materials, 2015, 25, 3798-3798.	7.8	3
25	A Fluorescent Tile DNA Diagnocode System for In Situ Rapid and Selective Diagnosis of Cytosolic RNA Cancer Markers. Scientific Reports, 2015, 5, 18497.	1.6	13
26	Surface Chemistry of Vitamin: Pyridoxal 5′â€Phosphate (Vitamin B ₆) as a Multifunctional Compound for Surface Functionalization. Advanced Functional Materials, 2015, 25, 4754-4760.	7.8	16
27	Tissue Adhesive Catecholâ€Modified Hyaluronic Acid Hydrogel for Effective, Minimally Invasive Cell Therapy. Advanced Functional Materials, 2015, 25, 3814-3824.	7.8	351
28	Biodegradable Nanotopography Combined with Neurotrophic Signals Enhances Contact Guidance and Neuronal Differentiation of Human Neural Stem Cells. Macromolecular Bioscience, 2015, 15, 1348-1356.	2.1	53
29	Bio-inspired oligovitronectin-grafted surface for enhanced self-renewal and long-term maintenance of human pluripotent stem cells under feeder-free conditions. Biomaterials, 2015, 50, 127-139.	5 . 7	59
30	Recapitulation of inÂvivo-like paracrine signals of human mesenchymal stem cells for functional neuronal differentiation of human neural stem cells in a 3D microfluidic system. Biomaterials, 2015, 63, 177-188.	5.7	67
31	Osteogenic priming of mesenchymal stem cells by chondrocyte-conditioned factors and mineralized matrix. Cell and Tissue Research, 2015, 362, 115-126.	1.5	5
32	Spheroform: Therapeutic Spheroidâ€Forming Nanotextured Surfaces Inspired by Desert Beetle <i>Physosterna cribripes</i> . Advanced Healthcare Materials, 2015, 4, 511-515.	3.9	24
33	Reconstituting Vascular Microenvironment of Neural Stem Cell Niche in Threeâ€Dimensional Extracellular Matrix. Advanced Healthcare Materials, 2014, 3, 1457-1464.	3.9	58
34	Switchable Waterâ€Adhesive, Superhydrophobic Palladium‣ayered Silicon Nanowires Potentiate the Angiogenic Efficacy of Human Stem Cell Spheroids. Advanced Materials, 2014, 26, 7043-7050.	11.1	73
35	Multiscale, Hierarchically Patterned Topography for Directing Human Neural Stem Cells into Functional Neurons. ACS Nano, 2014, 8, 7809-7822.	7.3	132
36	Implantable microfluidic device for the formation of three-dimensional vasculature by human endothelial progenitor cells. Biotechnology and Bioprocess Engineering, 2014, 19, 379-385.	1.4	16

#	Article	IF	CITATION
37	Paper-based bioactive scaffolds for stem cell-mediated bone tissue engineering. Biomaterials, 2014, 35, 9811-9823.	5.7	93
38	Bioinspired Materials: Hyaluronic Acid Catechol: A Biopolymer Exhibiting a pH-Dependent Adhesive or Cohesive Property for Human Neural Stem Cell Engineering (Adv. Funct. Mater. 14/2013). Advanced Functional Materials, 2013, 23, 1856-1856.	7.8	2
39	Hyaluronic Acid Catechol: A Biopolymer Exhibiting a pHâ€Dependent Adhesive or Cohesive Property for Human Neural Stem Cell Engineering. Advanced Functional Materials, 2013, 23, 1774-1780.	7.8	246
40	Polydopamine-Assisted Osteoinductive Peptide Immobilization of Polymer Scaffolds for Enhanced Bone Regeneration by Human Adipose-Derived Stem Cells. Biomacromolecules, 2013, 14, 3202-3213.	2.6	196
41	BMP-2 peptide-functionalized nanopatterned substrates for enhanced osteogenic differentiation of human mesenchymal stem cells. Biomaterials, 2013, 34, 7236-7246.	5.7	109
42	A microfluidic array for quantitative analysis of human neural stem cell self-renewal and differentiation in three-dimensional hypoxic microenvironment. Biomaterials, 2013, 34, 6607-6614.	5.7	44
43	Nanotopographical Manipulation of Focal Adhesion Formation for Enhanced Differentiation of Human Neural Stem Cells. ACS Applied Materials & Samp; Interfaces, 2013, 5, 10529-10540.	4.0	155
44	Three-dimensional extracellular matrix-mediated neural stem cell differentiation in a microfluidic device. Lab on A Chip, 2012, 12, 2305.	3.1	61
45	Polydopamine-mediated surface modification of scaffold materials for human neural stem cell engineering. Biomaterials, 2012, 33, 6952-6964.	5.7	311
46	Engineering Biomaterials for Feeder-Free Maintenance of Human Pluripotent Stem Cells. International Journal of Stem Cells, 2012, 5, 1-5.	0.8	9