Roberta Oberti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3699842/publications.pdf

Version: 2024-02-01

147 papers 4,836 citations

32 h-index 63 g-index

160 all docs

160 docs citations

160 times ranked 2933 citing authors

#	Article	IF	CITATIONS
1	Nomenclature of the amphibole supergroup. American Mineralogist, 2012, 97, 2031-2048.	1.9	898
2	Nb and Ta incorporation and fractionation in titanian pargasite and kaersutite: crystal–chemical constraints and implications for natural systems. Earth and Planetary Science Letters, 2000, 176, 185-201.	4.4	254
3	Trace-element incorporation in titanite: constraints from experimentally determined solid/liquid partition coefficients. Chemical Geology, 2002, 191, 105-119.	3.3	208
4	Trace-Element Partitioning Between Amphibole and Silicate Melt. Reviews in Mineralogy and Geochemistry, 2007, 67, 417-452.	4.8	207
5	Distinct site preferences for heavy and light REE in amphibole and the prediction of Amph/L D REE. Contributions To Mineralogy and Petrology, 1999, 137, 36-45.	3.1	150
6	Amphiboles: Crystal Chemistry. Reviews in Mineralogy and Geochemistry, 2007, 67, 1-54.	4.8	118
7	The crystal-chemistry of high-aluminium titanites. European Journal of Mineralogy, 1991, 3, 777-792.	1.3	105
8	The behaviour of Ti in amphiboles: I. Four- and six-coordinate Ti in richterite. European Journal of Mineralogy, 1992, 4, 425-440.	1.3	90
9	Infiltration metasomatism at Lherz as monitored by systematic ion-microprobe investigations close to a hornblendite vein. Chemical Geology, 1996, 134, 113-133.	3.3	85
10	Classification of the Amphiboles. Reviews in Mineralogy and Geochemistry, 2007, 67, 55-88.	4.8	85
11	Trace-element partitioning in olivine: modelling of a complete data set from a synthetic hydrous basanite melt. Lithos, 2004, 75, 39-54.	1.4	77
12	Origin of LREE-depleted amphiboles in the subcontinental mantle. Geochimica Et Cosmochimica Acta, 1995, 59, 1763-1771.	3.9	75
13	Temperature-dependent Al order-disorder in the tetrahedral double chain of C2/m amphiboles. European Journal of Mineralogy, 1995, 7, 1049-1064.	1.3	72
14	Fluoro-edenite from Biancavilla (Catania, Sicily, Italy): Crystal chemistry of a new amphibole end-member. American Mineralogist, 2001, 86, 1489-1493.	1.9	70
15	Long-Range Order in Amphiboles. Reviews in Mineralogy and Geochemistry, 2007, 67, 125-171.	4.8	70
16	Partitioning of rare earth elements, Y, Th, U, and Pb between pargasite, kaersutite, and basanite to trachyte melts: Implications for percolated and veined mantle. Geochemistry, Geophysics, Geosystems, 2000, 1, n/a-n/a.	2.5	63
17	Residual electron density at theM2 site inC2/c clinopyroxenes: Relationships with bulk chemistry and sub-solidus evolution. Physics and Chemistry of Minerals, 1987, 14, 514-520.	0.8	62
18	Characterization of amphibole fibres linked to mesothelioma in the area of Biancavilla, Eastern Sicily, Italy. Mineralogical Magazine, 2003, 67, 1221-1229.	1.4	55

#	Article	IF	CITATIONS
19	Non-ideal solid-solution in garnet: crystal-structure evidence and modelling. European Journal of Mineralogy, 1995, 7, 1299-1312.	1.3	55
20	On the symmetry and crystal chemistry of britholite: New structural and microanalytical data. American Mineralogist, 2001, 86, 1066-1075.	1.9	49
21	Lithium in amphiboles: detection, quantification, and incorporation mechanisms in the compositional space bridging sodic and BLi-amphiboles. European Journal of Mineralogy, 2003, 15, 309-319.	1.3	49
22	ON THE CLASSIFICATION OF AMPHIBOLES. Canadian Mineralogist, 2006, 44, 1-21.	1.0	49
23	Crystal-chemical complexity in natural garnets: structural constraints on chemical variability. European Journal of Mineralogy, 1995, 7, 1239-1250.	1.3	47
24	Detection, crystal-chemical mechanisms and petrological implications of [6]Ti4+ partitioning in pargasite and kaersutite. European Journal of Mineralogy, 1999, 11, 345-354.	1.3	46
25	Accurate Quantification of H, Li, Be, B, F, Ba, REE, Y, Th, and U in Complex Matrixes:Â A Combined Approach Based on SIMS and Single-Crystal Structure Refinement. Analytical Chemistry, 2000, 72, 3731-3738.	6.5	44
26	AMFORM, a new mass-based model for the calculation of the unit formula of amphiboles from electron microprobe analyses. American Mineralogist, 2018, 103, 1112-1125.	1.9	41
27	Steric effects vs secondary orbital interactions in nitrone cycloadditions. Tetrahedron, 1988, 44, 3735-3748.	1.9	36
28	Crystal structure of non-metamict Th-rich hellandite-(Ce) from Latium (Italy) and crystal chemistry of the hellandite-group minerals. American Mineralogist, 1999, 84, 913-921.	1.9	36
29	Britholite-hellandite intergrowths and associated REE-minerals from the alkali-syenitic ejecta of the Vico volcanic complex (Latium, Italy): petrological implications bearing on REE mobility in volcanic systems. European Journal of Mineralogy, 1999, 11, 843-854.	1.3	36
30	The P21/m? C2/m phase transition in synthetic amphibole Na NaMg Mg5 Si8 O22 (OH)2: thermodynamic and crystal-chemical evaluation. Physics and Chemistry of Minerals, 2003, 30, 570-581.	0.8	34
31	Site preference and local geometry of Sc in garnets: Part II. The crystal-chemistry of octahedral Sc in the andradite-Ca3Sc2Si3O12 join. American Mineralogist, 2006, 91, 1240-1248.	1.9	32
32	11. Trace-Element Partitioning Between Amphibole and Silicate Melt. , 2007, , 417-452.		32
33	The dynamics of Fe oxidation in riebeckite: A model for amphiboles. American Mineralogist, 2018, 103, 1103-1111.	1.9	32
34	Sodic-ferripedrizite, a new monoclinic amphibole bridging the magnesium-iron-manganese-lithium and the sodium-calcium groups. American Mineralogist, 2000, 85, 578-585.	1.9	31
35	Crystal-chemistry of a complex Mn-bearing alkali amphibole ("tirodite") on the verge of exsolution. European Journal of Mineralogy, 1993, 5, 1153-1160.	1.3	30
36	A crystal chemical re-evaluation of amphibole/melt and amphibole/clinopyroxene D _{Ti} values in petrogenetic studies. American Mineralogist, 2000, 85, 407-419.	1.9	30

#	Article	IF	Citations
37	Use of multivariate analysis for synchrotron micro-XANES analysis of iron valence state in amphiboles. American Mineralogist, 2016, 101, 1171-1189.	1.9	30
38	The high-temperature behaviour of riebeckite: expansivity, deprotonation, selective Fe oxidation and a novel cation disordering scheme for amphiboles. European Journal of Mineralogy, 2018, 30, 437-449.	1.3	29
39	On the Chemical Identification and Classification of Minerals. Minerals (Basel, Switzerland), 2019, 9, 591.	2.0	29
40	Evolution of coronas in Norwegian anorthosites: re-evaluation based on crystal-chemistry and microstructures. Contributions To Mineralogy and Petrology, 1985, 91, 330-339.	3.1	28
41	SHORT-RANGE ORDER IN MINERALS: AMPHIBOLES. Canadian Mineralogist, 2005, 43, 1895-1920.	1.0	28
42	The arrojadite enigma: II. Compositional space, new members, and nomenclature of the group. American Mineralogist, 2006, 91, 1260-1270.	1.9	28
43	Local structural environment of calcium in garnets: A combined structure-refinement and XANES investigation. Physics and Chemistry of Minerals, 1995, 22, 159.	0.8	27
44	Synthesis and crystal-chemistry of Na(NaMg)Mg5Si8O22(OH)2, aP21/mamphibole. American Mineralogist, 2004, 89, 640-646.	1.9	27
45	Site preference and local geometry of Sc in garnets: Part I. Multifarious mechanisms in the pyrope-grossular join. American Mineralogist, 2006, 91, 1230-1239.	1.9	27
46	The photochemical reaction between 1,4-dicyanonaphtalene and methylbenzenes. Tetrahedron, 1982, 38, 1027-1034.	1.9	26
47	Trace-element partitioning between synthetic potassic-richterites and silicate melts, and contrasts with the partitioning behaviour of pargasites and kaersutites. European Journal of Mineralogy, 2003, 15, 329-340.	1.3	26
48	Ferri-ottoliniite and ferriwhittakerite, two new end-members of the new Group 5 for monoclinic amphiboles. American Mineralogist, 2004, 89, 888-893.	1.9	26
49	Redox state of subcontinental lithospheric mantle and relationships with metasomatism: insights from spinel peridotites from northern Victoria Land (Antarctica). Contributions To Mineralogy and Petrology, 2012, 164, 1053-1067.	3.1	26
50	Li-BEARING ARFVEDSONITIC AMPHIBOLES FROM THE STRANGE LAKE PERALKALINE GRANITE, QUEBEC. Canadian Mineralogist, 2001, 39, 1161-1170.	1.0	26
51	A new hyper-calcic amphibole with Ca at the A site; fluor-cannilloite from Pargas, Finland. American Mineralogist, 1996, 81, 995-1002.	1.9	25
52	Synthesis, crystal structure and crystal chemistry of ferri-clinoholmquistite, ?Li2Mg3Fe3+2Si8O22(OH)2. Physics and Chemistry of Minerals, 2004, 31, 375.	0.8	25
53	Ciprianiite and mottanaite-(Ce), two new minerals of the hellandite group from Latium (Italy). American Mineralogist, 2002, 87, 739-744.	1.9	24
54	4. Long-Range Order in Amphiboles. , 2007, , 125-172.		24

#	Article	IF	CITATIONS
55	The behaviour of Mn in amphiboles: Mn in richterite. European Journal of Mineralogy, 1993, 5, 43-52.	1.3	24
56	Re-definition, nomenclature and crystal-chemistry of the hellandite group. American Mineralogist, 2002, 87, 745-752.	1.9	23
57	FTIR spectroscopy of Ti-rich pargasites from Lherz and the detection of O2 at the anionic O3 site in amphiboles. American Mineralogist, 2007, 92, 1645-1651.	1.9	22
58	Magnesiostaurolite and zincostaurolite: mineral description with a petrogenetic and crystal-chemical update. European Journal of Mineralogy, 2003, 15, 167-176.	1.3	21
59	Leverage analysis and structure refinement of minerals. American Mineralogist, 2000, 85, 532-542.	1.9	20
60	H T -XRD study of synthetic ferrian magnesian spodumene: the effect of site dimension on the P 2 1 / c? C 2 / c phase transition. Physics and Chemistry of Minerals, 2003, 30, 20-30.	0.8	20
61	Nondestructive determination of the amphibole crystalâ€chemical formulae by Raman spectroscopy: One step closer. Journal of Raman Spectroscopy, 2020, 51, 1530-1548.	2.5	20
62	Syn-anti selectivity in cycloadditions. 6. Cycloadditions of benzonitrile oxide, 2-diazopropane, and diphenylnitrilimine to polychloronorbornadienes. Journal of Organic Chemistry, 1980, 45, 1209-1213.	3.2	19
63	Characterization of trace Nd and Ce site preference and coordination in natural melanites: a combined X-ray diffraction and high-energy XAFS study. Physics and Chemistry of Minerals, 2002, 29, 495-502.	0.8	19
64	The arrojadite enigma: I. A new formula and a new model for the arrojadite structure. American Mineralogist, 2006, 91, 1249-1259.	1.9	19
65	SODIC-FERRI-FERROPEDRIZITE AND FERRI-CLINOFERROHOLMQUISTITE: MINERAL DATA AND DEGREE OF ORDER OF THE A-SITE CATIONS IN LI-RICH AMPHIBOLES. Canadian Mineralogist, 2003, 41, 1345-1354.	1.0	18
66	Non-metamict betafite from Le Carcarelle (Vico volcanic complex, Italy): occurrence and crystal structure. Mineralogical Magazine, 2004, 68, 939-950.	1.4	18
67	The crystal structure of peprossiite-(Ce), an anhydrous REE and Al mica-like borate with square-pyramidal coordination for Al. American Mineralogist, 2000, 85, 586-592.	1.9	17
68	Thermoelasticity and high-T behaviour of anthophyllite. Physics and Chemistry of Minerals, 2011, 38, 321-334.	0.8	17
69	High-T behaviour of gedrite: thermoelasticity, cation ordering and dehydrogenation. Contributions To Mineralogy and Petrology, 2012, 163, 923-937.	3.1	17
70	SHORT-RANGE ORDER IN AMPHIBOLES FROM THE BEAR LAKE DIGGINGS, ONTARIO. Canadian Mineralogist, 2006, 44, 1171-1179.	1.0	17
71	Deprotonation of Fe-dominant amphiboles: Single-crystal HT-FTIR spectroscopic studies of synthetic potassic-ferro-richterite. American Mineralogist, 2017, 102, 117-125.	1.9	16
72	Determination of site population in olivine: Warnings on X-ray data treatment and refinement. American Mineralogist, 2001, 86, 55-65.	1.9	15

#	Article	IF	Citations
73	Multipole-refined charge density study of diopside at ambient conditions. Physics and Chemistry of Minerals, 2005, 32, 638-645.	0.8	15
74	Clinoholmquistite discredited: The new amphibole end-member fluoro-sodic-pedrizite. American Mineralogist, 2005, 90, 732-736.	1.9	15
75	New Amphibole Compositions: Natural and Synthetic. Reviews in Mineralogy and Geochemistry, 2007, 67, 89-124.	4.8	15
76	Scandium-45 NMR of pyrope-grossular garnets: Resolution of multiple scandium sites and comparison with X-ray diffraction and X-ray absorption spectroscopy. American Mineralogist, 2007, 92, 1875-1880.	1.9	15
77	Synthetic Potassic-Ferro-Richterite: 1. Composition, Crystal Structure Refinement, and H <i>T</i> Behavior By <i>In Operando</i> Single-Crystal X-Ray Diffraction. Canadian Mineralogist, 2016, 54, 353-369.	1.0	15
78	Unusual M (super 3+) cations in synthetic amphiboles with nominal fluoro-eckermannite composition; deviations from stoichiometry and structural effects of the cummingtonite component. American Mineralogist, 1999, 84, 102-111.	1.9	14
79	Fluoronyböite from Jianchang (Su-Lu, China) and nyböite from Nybö (Nordfjord, Norway): a petrological and crystal-chemical comparison of these two high-pressure amphiboles. Mineralogical Magazine, 2003, 67, 769-782.	1.4	14
80	Changes in the local coordination of trace rare-earth elements in garnets by high-energy XAFS: new data on dysprosium. Physics and Chemistry of Minerals, 2004, 31, 162-167.	0.8	14
81	Photoreaction of 2-nitrophenazine 10-oxide with amines. Journal of the Chemical Society Perkin Transactions II, 1978, , 185.	0.9	13
82	Hexafluoroisopropanol as a suitable solvent for rearrangements via zwitterionic intermediates. Tetrahedron, 1991, 47, 6725-6736.	1.9	13
83	The crystal-structure of synthetic NaNa2Mg5Si8O21(OH)3, a triclinicC1l amphibole with a triple-cell and excess hydrogen. American Mineralogist, 2004, 89, 1464-1473.	1.9	13
84	Distinct local environments for Ca along the non-ideal pyrope–grossular solid solution: A new model based on crystallographic and EXAFS analysis. Chemical Geology, 2006, 225, 347-359.	3.3	13
85	Crystal-chemistry and short-range order of fluoro-edenite and fluoro-pargasite: a combined X-ray diffraction and FTIR spectroscopic approach. Mineralogical Magazine, 2014, 78, 293-310.	1.4	13
86	The crystal-chemistry of riebeckite, ideally Na2Fe ₃ ²⁺ Fe ₂ ³⁺ Si8O22(OH)2: a multi-technique study. Mineralogical Magazine, 2018, 82, 837-852.	1.4	13
87	Iron oxidation dynamics <i>vs.</i> temperature of synthetic potassic-ferro-richterite: a XANES investigation. Physical Chemistry Chemical Physics, 2018, 20, 21764-21771.	2.8	13
88	Synthesis and characterisation of ferri-clinoferroholmquistite, Li2(Fe2+3Fe3+2)Si8O22(OH)2. European Journal of Mineralogy, 2003, 15, 321-327.	1.3	12
89	1. Amphiboles: Crystal Chemistry., 2007, , 1-54.		12
90	The crystal chemistry of Li in gadolinite. American Mineralogist, 2008, 93, 996-1004.	1.9	12

#	Article	IF	CITATIONS
91	Magnesium K-edge EXAFS study of bond-length behavior in synthetic pyrope-grossular garnet solid solutions. American Mineralogist, 2008, 93, 495-498.	1.9	12
92	Synthesis and characterization of amphiboles along the tremolite-glaucophane join. American Mineralogist, 2013, 98, 588-600.	1.9	12
93	The crystal-chemistry of holmquistites: Ferroholmquistite from Greenbushes (Western Australia) and hints for compositional constraints in BLi amphiboles. American Mineralogist, 2005, 90, 1167-1176.	1.9	11
94	Periselectivity in the reactions of cyclopentadienones with 8-aryl-8-azaheptafulvenes. Tetrahedron, 1993, 49, 6331-6348.	1.9	10
95	Parvo-mangano-edenite, parvo-manganotremolite, and the solid solution between Ca and Mn2+ at the M4 site in amphiboles. American Mineralogist, 2006, 91, 526-532.	1.9	10
96	2. Classification of the Amphiboles. , 2007, , 55-88.		10
97	Aluminotaramite, alumino-magnesiotaramite, and fluoro-alumino-magnesiotaramite: Mineral data and crystal chemistry. American Mineralogist, 2007, 92, 1428-1435.	1.9	9
98	The effects of composition upon the high-pressure behaviour of amphiboles: compression of gedrite to 7 GPa and a comparison with anthophyllite and proto-amphibole. Mineralogical Magazine, 2012, 76, 987-995.	1.4	9
99	Eckermannite revised: The new holotype from the Jade Mine Tract, Myanmar-crystal structure, mineral data, and hints on the reasons for the rarity of eckermannite. American Mineralogist, 2015, 100, 909-914.	1.9	9
100	Heterodiene syntheses. Part 23. Zwitterions as intermediates in the formation of Michael adducts or as stable products of the reaction between 2-oxoindolin-3-ylidene derivatives with enamines or aminals. Journal of the Chemical Society Perkin Transactions 1, 1979, , 2687.	0.9	8
101	New base induced rearrangements of 4-acylisoxazolidines. Anionic reactional cascades from five membered rings to either four membered rings or open chain compounds. Tetrahedron Letters, 1996, 37, 917-920.	1.4	8
102	The P21/m â†" C2/m phase transition in amphiboles: new data on synthetic Na(NaMg)Mg5Si8O22F2 and the role of differential polyhedral expansion. Zeitschrift Fur Kristallographie - Crystalline Materials, 2008, 223, .	0.8	8
103	Crystal structure and crystal chemistry of fluoro-potassic-magnesio-arfvedsonite from Monte Metocha, Xixano region, Mozambique, and discussion of the holotype from Quebec, Canada. Mineralogical Magazine, 2010, 74, 951-960.	1.4	8
104	Atomistic insight into lithospheric conductivity revealed by phonon–electron excitations in hydrous iron-bearing silicates. Communications Materials, 2021, 2, .	6.9	8
105	The behaviour of Mn in amphiboles: Mn in synthetic fluor-edenite and synthetic fluor-pargasite. European Journal of Mineralogy, 1996, 9, 115-122.	1.3	8
106	Heterodiene syntheses. Part 20. 4-Arylidene-5-pyrazolones and ynamines: a $[2+2]$ cycloaddition followed by electrocyclic ring opening, in competition with a $[4+2]$ cycloaddition; the influence of the substituents on the intermediate. Journal of the Chemical Society Perkin Transactions 1, 1979, , 856.	0.9	7
107	Preliminary crystallographic data on buffalo \hat{l}^2 -lactoglobulin. Journal of Molecular Biology, 1979, 131, 411-413.	4.2	7
108	Heterodiene syntheses. Part 21. 1-Acetyl-2-oxoindolin-3-ylideneacetophenones and ethoxyethyne: spirobicyclic intermediates in competition with $[2+2]$ - and $[4+2]$ -cycloadditions. Journal of the Chemical Society Perkin Transactions 1, 1979, , 863.	0.9	7

#	Article	IF	CITATIONS
109	Synthesis and crystal structure of 3-deoxy-3-fluoro-1,2:5,6-di-O-isopropylidene-α-D-glucofuranose. Journal of Fluorine Chemistry, 1986, 32, 239-254.	1.7	7
110	Fluoro-aluminoleakeite, NaNa2(Mg2Al2Li)Si8O22F2, a new mineral of the amphibole group from Norra KÃrr, Sweden: description and crystal structure. Mineralogical Magazine, 2009, 73, 817-824.	1.4	7
111	The arrojadite enigma III. The incorporation of volatiles: a polarised FTIR spectroscopy study. European Journal of Mineralogy, 2014, 26, 679-688.	1.3	7
112	Ferro-ferri-hornblende from the Traversella mine (Ivrea, Italy): occurrence, mineral description and crystal-chemistry. Mineralogical Magazine, 2016, 80, 1233-1242.	1.4	7
113	The crystal chemistry of oxo-mangani-leakeite and mangano-mangani-ungarettiite from the Hoskins mine and their impossible solid-solution: An XRD and FTIR study. Mineralogical Magazine, 2017, 81, 707-722.	1.4	7
114	Effects of Fe2+ and Fe3+ contents on cation ordering in omphacite. European Journal of Mineralogy, 1998, 10, 889-906.	1.3	7
115	Site selectivity in the reaction of tetracyanoethene with tetracyclo [5.3.2.02,10.03,6] dodeca-4,8,11-triene. Tetrahedron, 1986, 42, 923-936.	1.9	6
116	On the symmetry and atomic ordering in (OH,F)-rich spessartine: towards a new hydrogarnet end-member. Zeitschrift Fur Kristallographie - Crystalline Materials, 2012, 227, 385-395.	0.8	6
117	Ferri-fluoro-leakeite: a second occurrence at Bratthagen (Norway), with new data on Zn partitioning and the oxo component in Na amphiboles. Mineralogical Magazine, 2014, 78, 861-869.	1.4	6
118	Katophorite from the Jade Mine Tract, Myanmar: mineral description of a rare (grandfathered) endmember of the amphibole supergroup. Mineralogical Magazine, 2015, 79, 355-363.	1.4	6
119	Order of [6]Ti4+ in a Ti-rich calcium amphibole from Kaersut, Greenland: a combined X-ray and neutron diffraction study. Physics and Chemistry of Minerals, 2017, 44, 83-94.	0.8	6
120	Polarized Raman spectroscopy and lattice dynamics of potassic-magnesio-arfvedsonite. Physics and Chemistry of Minerals, 2019, 46, 181-191.	0.8	6
121	Thermoelasticity, cation exchange, and deprotonation in Fe-rich holmquistite: Toward a crystal-chemical model for the high-temperature behavior of orthorhombic amphiboles. American Mineralogist, 2019, 104, 1829-1839.	1.9	6
122	Phase extension and refinement by density modification in protein crystallography. Acta Crystallographica Section A: Foundations and Advances, 1983, 39, 68-74.	0.3	5
123	Experimental multipole-refined and theoretical charge density study of LiGaSi2O6 clinopyroxene at ambient conditions. Physics and Chemistry of Minerals, 2007, 34, 519-527.	0.8	5
124	Fluoro-sodic-ferropedrizite, NaLi ₂ (Fe ₂ _{>2} Ei)Si ₈ O ₂₂ F _{2 a new mineral of the amphibole group from the Sutlug River, Tuva Republic, Russia: description and crystal structure. Mineralogical Magazine, 2009, 73, 487-494.}	,	5
125	Ti-RICH FLUORO-RICHTERITE FROM KARIÃSEN (NORWAY): THE OXO-COMPONENT AND THE USE OF Ti ⁴⁺ AS A PROXY. Canadian Mineralogist, 2015, 53, 285-294.	1.0	5
126	Photochemical benzylation of 1,4-dicyanonaphthalene; X-ray crystal structure of 6, 11-dicyano-5, 11-methano-5,6, 11,12-tetrahydrodibenzo-[a,e]cyclo-octene. Journal of the Chemical Society Chemical Communications, 1981, , 50.	2.0	4

#	Article	IF	CITATIONS
127	3. New Amphibole Compositions: Natural and Synthetic. , 2007, , 89-124.		4
128	THE CRYSTAL CHEMISTRY OF ALKALI AMPHIBOLES FROM THE KAJLIDONGRI MANGANESE MINE, INDIA. Canadian Mineralogist, 2008, 46, 455-466.	1.0	4
129	Magnesio-arfvedsonite from Jade Mine Tract, Myanmar: mineral description and crystal chemistry. Mineralogical Magazine, 2015, 79, 253-260.	1.4	4
130	Magnesio-hornblende from LÃ $\frac{1}{4}$ deritz, Namibia: mineral description and crystal chemistry. Mineralogical Magazine, 2018, 82, 1253-1259.	1.4	4
131	Structural studies of ritipenem acoxil (FCE 22891). X-ray crystal structure and chiroptical properties. Bioorganic and Medicinal Chemistry Letters, 1993, 3, 2333-2336.	2.2	3
132	Oxo-mangani-leakeite from the Hoskins mine, New South Wales, Australia: occurrence and mineral description. Mineralogical Magazine, 2016, 80, 1013-1021.	1.4	3
133	Ferri-obertiite from the Rothenberg quarry, Eifel volcanic complex, Germany: mineral data and crystal chemistry of a new amphibole end-member. Mineralogical Magazine, 2017, 81, 641-651.	1.4	3
134	Potassic-magnesio-arfvedsonite, KNa2(MgFe2+Fe3+)5Si8O22(OH)2: mineral description and crystal chemistry. Mineralogical Magazine, 2019, 83, 465-472.	1.4	3
135	The crystal chemistry of lithium and Fe3+ in synthetic orthopyroxene. Physics and Chemistry of Minerals, 2006, 33, 475-483.	0.8	2
136	Potassic-aluminotaramite from Sierra de los Filabres, Spain. European Journal of Mineralogy, 2008, 20, 1005-1010.	1.3	2
137	Fluoro-potassic-pargasite, KCa2(Mg4Al)(Si6Al2)O22F2, from the Tranomaro area, Madagascar: mineral description and crystal chemistry. Mineralogical Magazine, 2010, 74, 961-967.	1.4	2
138	Magnesio-ferri-fluoro-hornblende from Portoscuso, Sardinia, Italy: description of a newly approved member of the amphibole supergroup. Mineralogical Magazine, 2016, 80, 269-275.	1.4	2
139	Ferro-tschermakite from the Ploumanac'h granitic complex, Brittany, France: mineral description. European Journal of Mineralogy, 2018, 30, 171-176.	1.3	2
140	The structure of a 1,3â€oxazonine derivative obtained by photochemical addition of 6â€cyanophenanthridine <i>N</i> àâ€oxide and 2,3â€dimethylâ€2â€butene. Journal of Heterocyclic Chemistry, 198 20, 1007-1009.	3 3 ,6	1
141	CLINOFERROGEDRITE IN THE CONTACT-METAMORPHOSED BIWABIK IRON FORMATION, NORTHEASTERN MINNESOTA: DISCUSSION. Canadian Mineralogist, 2014, 52, 917-920.	1.0	1
142	Structure of 17α-hydroxyprogesterone caproate. Acta Crystallographica Section C: Crystal Structure Communications, 1989, 45, 478-480.	0.4	0
143	Structure of dimethyl 2-[o-(3,5-dimethyl-1-pyrazolyl)anilino]-3-methoxymaleate. Acta Crystallographica Section C: Crystal Structure Communications, 1993, 49, 1976-1978.	0.4	O
144	MSA/GS, ANL Short Course on Amphiboles Preface. European Journal of Mineralogy, 2008, 20, 1003-1003.	1.3	0

#	Article	IF	CITATIONS
145	Fluoro-tremolite from the Limecrest-Southdown quarry, Sparta, New Jersey, USA: crystal chemistry of a newly approved end-member of the amphibole supergroup. Mineralogical Magazine, 2018, 82, 145-157.	1.4	O
146	Potassic-jeanlouisite from Leucite Hill, Wyoming, USA, ideally K(NaCa)(Mg ₄ Ti)Si ₈ O ₂₂ O ₂ : the first species of oxo amphibole in the sodium–calcium subgroup. Mineralogical Magazine, 2019, 83, 587-593.	1.4	0
147	Luciano Ungaretti (1942-2001). European Journal of Mineralogy, 2001, 13, 1243-1244.	1.3	O