
Sally A Power

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3699780/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ecological stoichiometry and fungal community turnover reveal variation among mycorrhizal partners in their responses to warming and drought. Molecular Ecology, 2023, 32, 229-243.	2.0	4
2	Shortâ€ŧerm drought is a stronger driver of plant morphology and nutritional composition than warming in two common pasture species. Journal of Agronomy and Crop Science, 2022, 208, 841-852.	1.7	5
3	No CO2 fertilization effect on plant growth despite enhanced rhizosphere enzyme activity in a low phosphorus soil. Plant and Soil, 2022, 471, 359-374.	1.8	3
4	Assessing climate risk to support urban forests in a changing climate. Plants People Planet, 2022, 4, 201-213.	1.6	13
5	Nutrients and herbivores impact grassland stability across spatial scales through different pathways. Global Change Biology, 2022, 28, 2678-2688.	4.2	18
6	Pastures and Climate Extremes: Impacts of Cool Season Warming and Drought on the Productivity of Key Pasture Species in a Field Experiment. Frontiers in Plant Science, 2022, 13, 836968.	1.7	8
7	Drought and warming alter gross primary production allocation and reduce productivity in a widespread pasture grass. Plant, Cell and Environment, 2022, 45, 2271-2291.	2.8	12
8	Root trait shifts towards an avoidance strategy promote productivity and recovery in <scp>C₃</scp> and <scp>C₄</scp> pasture grasses under drought. Functional Ecology, 2022, 36, 1754-1771.	1.7	7
9	Co-flowering plants support diverse pollinator populations and facilitate pollinator visitation to sweet cherry crops. Basic and Applied Ecology, 2022, 63, 36-48.	1.2	9
10	Plant functional traits affect competitive vigor of pasture grasses during drought and following recovery. Ecosphere, 2022, 13, .	1.0	4
11	Near infrared spectroscopy calibration strategies to predict multiple nutritional parameters of pasture species from different functional groups. Journal of Near Infrared Spectroscopy, 2022, 30, 254-263.	0.8	2
12	Climate warming negates arbuscular mycorrhizal fungal reductions in soil phosphorus leaching with tall fescue but not lucerne. Soil Biology and Biochemistry, 2021, 152, 108075.	4.2	15
13	Spatial homogenization of understorey plant communities under eCO ₂ in a mature <i>Eucalyptus</i> woodland. Journal of Ecology, 2021, 109, 1386-1395.	1.9	2
14	Variability of arbuscular mycorrhizal fungal communities within the root systems of individual plants is high and influenced by host species and root phosphorus. Pedobiologia, 2021, 84, 150691.	0.5	9
15	Understorey plant community assemblage of Australian <i>Eucalyptus</i> woodlands under elevated CO2 is modulated by water and phosphorus availability. Journal of Plant Ecology, 2021, 14, 478-490.	1.2	2
16	Altered precipitation and root herbivory affect the productivity and composition of a mesic grassland. Bmc Ecology and Evolution, 2021, 21, 145.	0.7	0
17	Arbuscular mycorrhizal fungal-mediated reductions in N2O emissions were not impacted by experimental warming for two common pasture species. Pedobiologia, 2021, 87-88, 150744.	0.5	1
18	Changes in plant species abundance alter the multifunctionality and functional space of heathland ecosystems. New Phytologist, 2021, 232, 1238-1249.	3.5	7

#	Article	IF	CITATIONS
19	Temporal rarity is a better predictor of local extinction risk than spatial rarity. Ecology, 2021, 102, e03504.	1.5	14
20	Staying in touch: how highly specialised moth pollinators track host plant phenology in unpredictable climates. Bmc Ecology and Evolution, 2021, 21, 161.	0.7	2
21	AusTraits, a curated plant trait database for the Australian flora. Scientific Data, 2021, 8, 254.	2.4	73
22	Seasonal effects of altered precipitation regimes on ecosystem-level CO2 fluxes and their drivers in a grassland from Eastern Australia. Plant and Soil, 2021, 460, 435-451.	1.8	9
23	Contrasting heat tolerance of urban trees to extreme temperatures during heatwaves. Urban Forestry and Urban Greening, 2021, 66, 127387.	2.3	14
24	Opposing community assembly patterns for dominant and nondominant plant species in herbaceous ecosystems globally. Ecology and Evolution, 2021, 11, 17744-17761.	0.8	8
25	Temporal dynamics of mycorrhizal fungal communities and coâ€associations with grassland plant communities following experimental manipulation of rainfall. Journal of Ecology, 2020, 108, 515-527.	1.9	32
26	Biogeography of arbuscular mycorrhizal fungal spore traits along an aridity gradient, and responses to experimental rainfall manipulation. Fungal Ecology, 2020, 46, 100899.	0.7	23
27	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	4.2	1,038
28	Spatial distribution of fine root biomass in a remnant Eucalyptus tereticornis woodland in Eastern Australia. Plant Ecology, 2020, 221, 55-62.	0.7	5
29	Soil organic carbon and nitrogen pools are increased by mixed grass and legume cover crops in vineyard agroecosystems: Detecting short-term management effects using infrared spectroscopy. Geoderma, 2020, 379, 114619.	2.3	28
30	Global impacts of fertilization and herbivore removal on soil net nitrogen mineralization are modulated by local climate and soil properties. Global Change Biology, 2020, 26, 7173-7185.	4.2	25
31	Water availability drives fine root dynamics in a <i>Eucalyptus</i> woodland under elevated atmospheric CO ₂ concentration. Functional Ecology, 2020, 34, 2389-2402.	1.7	7
32	General destabilizing effects of eutrophication on grassland productivity at multiple spatial scales. Nature Communications, 2020, 11, 5375.	5.8	75
33	Links between soil microbial communities, functioning, and plant nutrition under altered rainfall in Australian grassland. Ecological Monographs, 2020, 90, e01424.	2.4	26
34	Nutrients cause grassland biomass to outpace herbivory. Nature Communications, 2020, 11, 6036.	5.8	35
35	Warming Reduces Net Carbon Gain and Productivity in Medicago sativa L. and Festuca arundinacea. Agronomy, 2020, 10, 1601.	1.3	8
36	Microbial processing of plant remains is coâ€limited by multiple nutrients in global grasslands. Global Change Biology, 2020, 26, 4572-4582.	4.2	27

#	Article	IF	CITATIONS
37	The fate of carbon in a mature forest under carbon dioxide enrichment. Nature, 2020, 580, 227-231.	13.7	218
38	Functional adaptations and trait plasticity of urban trees along a climatic gradient. Urban Forestry and Urban Greening, 2020, 54, 126771.	2.3	39
39	Allometric Estimates of Aboveground Biomass Using Cover and Height Are Improved by Increasing Specificity of Plant Functional Groups in Eastern Australian Rangelands. Rangeland Ecology and Management, 2020, 73, 375-383.	1.1	17
40	High-throughput, image-based phenotyping reveals nutrient-dependent growth facilitation in a grass-legume mixture. PLoS ONE, 2020, 15, e0239673.	1.1	8
41	Soil net nitrogen mineralisation across global grasslands. Nature Communications, 2019, 10, 4981.	5.8	57
42	Drought and phosphorus affect productivity of a mesic grassland via shifts in root traits of dominant species. Plant and Soil, 2019, 444, 457-473.	1.8	12
43	Decoupling of nutrient cycles in a <i>Eucalyptus</i> woodland under elevated CO ₂ . Journal of Ecology, 2019, 107, 2532-2540.	1.9	12
44	A nonâ€pollinating moth inflicts higher seed predation than two coâ€pollinators in an obligate pollination mutualism. Ecological Entomology, 2019, 44, 780-791.	1.1	5
45	Assessing the vulnerability of Australia's urban forests to climate extremes. Plants People Planet, 2019, 1, 387-397.	1.6	17
46	Ecosystem type and resource quality are more important than global change drivers in regulating early stages of litter decomposition. Soil Biology and Biochemistry, 2019, 129, 144-152.	4.2	52
47	Experimentally altered rainfall regimes and host root traits affect grassland arbuscular mycorrhizal fungal communities. Molecular Ecology, 2018, 27, 2152-2163.	2.0	58
48	Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents. Global Change Biology, 2018, 24, 2818-2827.	4.2	221
49	What shapes plant and animal diversity on urban golf courses?. Urban Ecosystems, 2018, 21, 565-576.	1.1	5
50	Elevated <scp>CO</scp> ₂ concentrations reduce C ₄ cover and decrease diversity of understorey plant community in a <i>Eucalyptus</i> woodland. Journal of Ecology, 2018, 106, 1483-1494.	1.9	25
51	Effects of competition and herbivory over woody seedling growth in a temperate woodland trump the effects of elevated CO2. Oecologia, 2018, 187, 811-823.	0.9	15
52	Two's company, three's a crowd: co-occurring pollinators and parasite species in Breynia oblongifolia (Phyllanthaceae). BMC Evolutionary Biology, 2018, 18, 193.	3.2	7
53	Drought negates growth stimulation due to root herbivory in pasture grasses. Oecologia, 2018, 188, 777-789.	0.9	3
54	Assessing community and ecosystem sensitivity to climate change – toward a more comparative approach. Journal of Vegetation Science, 2017, 28, 235-237.	1.1	38

#	Article	IF	CITATIONS
55	Rhizosphere-driven increase in nitrogen and phosphorus availability under elevated atmospheric CO2 in a mature Eucalyptus woodland. Plant and Soil, 2017, 416, 283-295.	1.8	40
56	Stomatal and non-stomatal limitations of photosynthesis for four tree species under drought: A comparison of model formulations. Agricultural and Forest Meteorology, 2017, 247, 454-466.	1.9	91
57	Effects of elevated CO2 on fine root biomass are reduced by aridity but enhanced by soil nitrogen: A global assessment. Scientific Reports, 2017, 7, 15355.	1.6	16
58	Nutrient addition shifts plant community composition towards earlier flowering species in some prairie ecoregions in the U.S. Central Plains. PLoS ONE, 2017, 12, e0178440.	1.1	13
59	DRI-Grass: A New Experimental Platform for Addressing Grassland Ecosystem Responses to Future Precipitation Scenarios in South-East Australia. Frontiers in Plant Science, 2016, 7, 1373.	1.7	36
60	Altered Precipitation Impacts on Above- and Below-Ground Grassland Invertebrates: Summer Drought Leads to Outbreaks in Spring. Frontiers in Plant Science, 2016, 7, 1468.	1.7	41
61	Elevated carbon dioxide increases soil nitrogen and phosphorus availability in a phosphorusâ€limited <i>Eucalyptus</i> woodland. Clobal Change Biology, 2016, 22, 1628-1643.	4.2	55
62	Reducing rainfall amount has a greater negative effect on the productivity of grassland plant species than reducing rainfall frequency. Functional Plant Biology, 2016, 43, 380.	1.1	16
63	Species origin affects the rate of response to interâ€annual growing season precipitation and nutrient addition in four Australian native grasslands. Journal of Vegetation Science, 2016, 27, 1164-1176.	1.1	18
64	Using models to guide field experiments: <i>a priori</i> predictions for the <scp>CO</scp> ₂ response of a nutrient―and waterâ€Iimited native Eucalypt woodland. Global Change Biology, 2016, 22, 2834-2851.	4.2	77
65	Shifts in microbial communities do not explain the response of grassland ecosystem function to plant functional composition and rainfall change. Soil Biology and Biochemistry, 2016, 92, 199-210.	4.2	34
66	Plant diversity drives soil microbial biomass carbon in grasslands irrespective of global environmental change factors. Global Change Biology, 2015, 21, 4076-4085.	4.2	134
67	Functional Relationships with N Deposition Differ According to Stand Maturity in Calluna-Dominated Heathland. Ambio, 2015, 44, 131-141.	2.8	7
68	Plant and arthropod community sensitivity to rainfall manipulation but not nitrogen enrichment in a successional grassland ecosystem. Oecologia, 2014, 176, 1173-1185.	0.9	24
69	Traitâ€based classification and manipulation of plant functional groups for biodiversity–ecosystem function experiments. Journal of Vegetation Science, 2014, 25, 248-261.	1.1	48
70	The Role of Nitrogen Deposition in Widespread Plant Community Change Across Semi-natural Habitats. Ecosystems, 2014, 17, 864-877.	1.6	86
71	Ecosystem functions are resistant to extreme changes to rainfall regimes in a mesotrophic grassland. Plant and Soil, 2014, 381, 351-365.	1.8	15
72	Modelling relationships between lichen bioindicators, air quality and climate on a national scale: Results from the UK OPAL air survey. Environmental Pollution, 2013, 182, 437-447.	3.7	35

#	Article	IF	CITATIONS
73	How does N deposition affect belowground heathland recovery following wildfire?. Soil Biology and Biochemistry, 2013, 57, 775-783.	4.2	9
74	Why lichens are bad biomonitors of ozone pollution?. Ecological Indicators, 2013, 34, 391-397.	2.6	12
75	Direct and indirect effects of roads and road vehicles on the plant community composition of calcareous grasslands. Environmental Pollution, 2013, 176, 106-113.	3.7	16
76	Effects of ozone on crops in north-west Pakistan. Environmental Pollution, 2013, 174, 244-249.	3.7	14
77	Nitrogen Deposition Reduces Plant Diversity and Alters Ecosystem Functioning: Field-Scale Evidence from a Nationwide Survey of UK Heathlands. PLoS ONE, 2013, 8, e59031.	1.1	93
78	Plant Functional Group Composition Modifies the Effects of Precipitation Change on Grassland Ecosystem Function. PLoS ONE, 2013, 8, e57027.	1.1	62
79	Impacts of atmospheric nitrogen deposition: responses of multiple plant and soil parameters across contrasting ecosystems in longâ€term field experiments. Global Change Biology, 2012, 18, 1197-1215.	4.2	340
80	Fieldâ€scale evaluation of effects of nitrogen deposition on the functioning of heathland ecosystems. Journal of Ecology, 2012, 100, 331-342.	1.9	27
81	Effects of roads on adjacent plant community composition and ecosystem function: An example from three calcareous ecosystems. Environmental Pollution, 2012, 163, 273-280.	3.7	40
82	Longâ€ŧerm nitrogen additions increase likelihood of climate stress and affect recovery from wildfire in a lowland heath. Global Change Biology, 2012, 18, 2824-2837.	4.2	34
83	Parasites and mutualism function: measuring enemyâ€free space in a fig–pollinator symbiosis. Oikos, 2012, 121, 1833-1839.	1.2	26
84	The effects of air pollution on urban ecosystems and agriculture. International Journal of Sustainable Development and World Ecology, 2011, 18, 226-235.	3.2	47
85	Open Air Laboratories (OPAL): A community-driven research programme. Environmental Pollution, 2011, 159, 2203-2210.	3.7	52
86	Effects of vehicle exhaust emissions on urban wild plant species. Environmental Pollution, 2011, 159, 1984-1990.	3.7	59
87	Inter- and Intra-specific Differences in the Response of Chinese Leafy Vegetables to Ozone. Water, Air, and Soil Pollution, 2011, 216, 451-462.	1.1	7
88	N:P Ratio and the Nature of Nutrient Limitation in Calluna-Dominated Heathlands. Ecosystems, 2010, 13, 317-327.	1.6	66
89	The impact of tropospheric ozone pollution on trial plot winter wheat yields in Great Britain – An econometric approach. Environmental Pollution, 2010, 158, 1948-1954.	3.7	9
90	Relationships between lichen community composition and concentrations of NO2 and NH3. Environmental Pollution, 2010, 158, 2553-2560.	3.7	29

#	Article	IF	CITATIONS
91	Use of Calluna vulgaris to detect signals of nitrogen deposition across anÂurban–rural gradient. Atmospheric Environment, 2010, 44, 1772-1780.	1.9	27
92	A global comparison of grassland biomass responses to CO ₂ and nitrogen enrichment. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 2047-2056.	1.8	125
93	Environmental myopia: a diagnosis and a remedy. Trends in Ecology and Evolution, 2010, 25, 556-561.	4.2	40
94	Responses of herbaceous plants to urban air pollution: Effects on growth, phenology and leaf surface characteristics. Environmental Pollution, 2009, 157, 1279-1286.	3.7	163
95	Quantifying local traffic contributions to NO2 and NH3 concentrations in natural habitats. Environmental Pollution, 2009, 157, 2845-2852.	3.7	24
96	Effects of fertilizer, fungal endophytes and plant cultivar on the performance of insect herbivores and their natural enemies. Functional Ecology, 2007, 21, 107.	1.7	62
97	Effects of herbicide spray drift and fertilizer overspread on selected species of woodland ground flora: comparison between short-term and long-term impact assessments and field surveys. Journal of Applied Ecology, 2007, 44, 374-384.	1.9	66
98	Ecosystem recovery: heathland response to a reduction in nitrogen deposition. Global Change Biology, 2006, 12, 1241-1252.	4.2	69
99	Evolution of a complex coevolved trait: active pollination in a genus of fig wasps. Journal of Evolutionary Biology, 2004, 17, 238-246.	0.8	29
100	Modelling the impacts of atmospheric nitrogen deposition on Calluna-dominated ecosystems in the UK. Journal of Applied Ecology, 2004, 41, 897-909.	1.9	54
101	Response of Pinus Sylvestris Seedlings to Cadmium and Mycorrhizal Colonisation. Water, Air, and Soil Pollution, 2004, 155, 189-203.	1.1	8
102	Linking Field Experiments to Long-Term Simulation of Impacts of Nitrogen Deposition on Heathlands and Moorlands. Water, Air and Soil Pollution, 2004, 4, 259-267.	0.8	11
103	Effects of habitat management on heathland response to atmospheric nitrogen deposition. Biological Conservation, 2004, 120, 41-52.	1.9	55
104	Effects of host plant exposure to cadmium on mycorrhizal infection and soluble carbohydrate levels of Pinus sylvestris seedlings. Environmental Pollution, 2004, 131, 287-294.	3.7	13
105	Title is missing!. Water, Air, and Soil Pollution, 2003, 145, 253-266.	1.1	7
106	Effects of soil cadmium on Pinus sylvestris L. seedlings. Plant and Soil, 2003, 257, 443-449.	1.8	37
107	Effects of cadmium on growth and glucose utilisation of ectomycorrhizal fungi in vitro. Mycorrhiza, 2003, 13, 223-226.	1.3	9
108	Responses of fen and fenâ€meadow communities to ozone. New Phytologist, 2002, 156, 399-408.	3.5	34

#	Article	IF	CITATIONS
109	Habitat Management: A Tool to Modify Ecosystem Impacts of Nitrogen Deposition?. Scientific World Journal, The, 2001, 1, 714-721.	0.8	28
110	Fatal fighting in fig wasps – GBH in time and space. Trends in Ecology and Evolution, 1999, 14, 257-259.	4.2	18
111	Effects of nitrogen addition on the stress sensitivity of Calluna vulgaris. New Phytologist, 1998, 138, 663-673.	3.5	73
112	Impacts and fate of experimentally enhanced nitrogen deposition on a British lowland heath. Environmental Pollution, 1998, 102, 27-34.	3.7	71
113	Long-Term Effects of Ammonium Sulphate on Calluna valgaris. Journal of Applied Ecology, 1997, 34, 208.	1.9	29
114	Nutrient relations and root mycorrhizal status of healthy and declining beech (Fagus sylvatica L.) in Southern Britain. Water, Air, and Soil Pollution, 1996, 86, 317-333.	1.1	20
115	Effects of within-tree flowering asynchrony on the dynamics of seed and wasp production in an Australian fig species. Journal of Biogeography, 1996, 23, 487-493.	1.4	60
116	Recent trends in beech tree health in southern Britain and the influence of soil type. Water, Air, and Soil Pollution, 1995, 85, 1293-1298.	1.1	13
117	Effects of ozone on calcareous grassland communities. Water, Air, and Soil Pollution, 1995, 85, 1527-1532.	1.1	24
118	Long term effects of enhanced nitrogen deposition on a lowland dry heath in southern Britain. Water, Air, and Soil Pollution, 1995, 85, 1701-1706.	1.1	31
119	Temporal Trends in Twig Growth of Fagus sylvatica L. and their Relationships with Environmental Factors. Forestry, 1994, 67, 13-30.	1.2	36
120	A Survey of the Health of Fagus sylvatica in Southern Britain. Journal of Applied Ecology, 1993, 30, 295.	1.9	20