Xiang-Peng Kong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/369971/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Uroplakin Ia is the urothelial receptor for uropathogenic <i>Escherichia coli</i> : evidence from in vitro FimH binding. Journal of Cell Science, 2001, 114, 4095-4103.	1.2	311
2	Emergence of SARS-CoV-2 through recombination and strong purifying selection. Science Advances, 2020, 6, .	4.7	307
3	Conserved structural elements in the V3 crown of HIV-1 gp120. Nature Structural and Molecular Biology, 2010, 17, 955-961.	3.6	147
4	Distinct Glycan Structures of Uroplakins Ia and Ib. Journal of Biological Chemistry, 2006, 281, 14644-14653.	1.6	119
5	Structural basis for tetraspanin functions as revealed by the cryo-EM structure of uroplakin complexes at 6-AIS resolution. Journal of Cell Biology, 2006, 173, 975-983.	2.3	115
6	The wide utility of rabbits as models of human diseases. Experimental and Molecular Medicine, 2018, 50, 1-10.	3.2	103
7	Organization of uroplakin subunits: transmembrane topology, pair formation and plaque composition. Biochemical Journal, 2001, 355, 13-18.	1.7	97
8	Structural basis of urothelial permeability barrier function as revealed by Cryo-EM studies of the 16 nm uroplakin particle. Journal of Cell Science, 2003, 116, 4087-4094.	1.2	90
9	Functional and immunochemical cross-reactivity of V2-specific monoclonal antibodies from HIV-1-infected individuals. Virology, 2012, 427, 198-207.	1.1	85
10	Structural Basis of the Cross-Reactivity of Genetically Related Human Anti-HIV-1 mAbs: Implications for Design of V3-Based Immunogens. Structure, 2009, 17, 1538-1546.	1.6	81
11	Localization of uroplakin Ia, the urothelial receptor for bacterial adhesin FimH, on the six inner domains of the 16 nm urothelial plaque particle 1 1Edited by W. Baumeister. Journal of Molecular Biology, 2002, 317, 697-706.	2.0	77
12	Organization of uroplakin subunits: transmembrane topology, pair formation and plaque composition. Biochemical Journal, 2001, 355, 13.	1.7	72
13	Structure/Function Studies Involving the V3 Region of the HIV-1 Envelope Delineate Multiple Factors That Affect Neutralization Sensitivity. Journal of Virology, 2016, 90, 636-649.	1.5	70
14	The V1V2 Region of HIV-1 gp120 Forms a Five-Stranded Beta Barrel. Journal of Virology, 2015, 89, 8003-8010.	1.5	68
15	The structural features that distinguish PD-L2 from PD-L1 emerged in placental mammals. Journal of Biological Chemistry, 2020, 295, 4372-4380.	1.6	56
16	Viral Escape from Neutralizing Antibodies in Early Subtype A HIV-1 Infection Drives an Increase in Autologous Neutralization Breadth. PLoS Pathogens, 2013, 9, e1003173.	2.1	55
17	Vaccine-induced Human Antibodies Specific for the Third Variable Region of HIV-1 gp120 Impose Immune Pressure on Infecting Viruses. EBioMedicine, 2014, 1, 37-45.	2.7	55
18	Human Anti-V3 HIV-1 Monoclonal Antibodies Encoded by the VH5-51/VL Lambda Genes Define a Conserved Antigenic Structure. PLoS ONE, 2011, 6, e27780.	1.1	54

XIANG-PENG KONG

#	Article	IF	CITATIONS
19	Uropathogenic E. coli Adhesin-Induced Host Cell Receptor Conformational Changes: Implications in Transmembrane Signaling Transduction. Journal of Molecular Biology, 2009, 392, 352-361.	2.0	48
20	Epitope Mapping of Conformational V2-specific Anti-HIV Human Monoclonal Antibodies Reveals an Immunodominant Site in V2. PLoS ONE, 2013, 8, e70859.	1.1	48
21	Atomic Force Microscopy of Mammalian Urothelial Surface. Journal of Molecular Biology, 2007, 374, 365-373.	2.0	43
22	Structure-guided design and immunological characterization of immunogens presenting the HIV-1 gp120 V3 loop on a CTB scaffold. Virology, 2010, 405, 513-523.	1.1	42
23	Rationally Designed Immunogens Targeting HIV-1 gp120 V1V2 Induce Distinct Conformation-Specific Antibody Responses in Rabbits. Journal of Virology, 2016, 90, 11007-11019.	1.5	41
24	Functional Implications of the Binding Mode of a Human Conformation-Dependent V2 Monoclonal Antibody against HIV. Journal of Virology, 2014, 88, 4100-4112.	1.5	40
25	Tau antibody chimerization alters its charge and binding, thereby reducing its cellular uptake and efficacy. EBioMedicine, 2019, 42, 157-173.	2.7	38
26	Multimeric Epitope-Scaffold HIV Vaccines Target V1V2 and Differentially Tune Polyfunctional Antibody Responses. Cell Reports, 2019, 28, 877-895.e6.	2.9	36
27	Rabbit Anti-HIV-1 Monoclonal Antibodies Raised by Immunization Can Mimic the Antigen-Binding Modes of Antibodies Derived from HIV-1-Infected Humans. Journal of Virology, 2013, 87, 10221-10231.	1.5	34
28	Antigenic landscape of the HIV-1 envelope and new immunological concepts defined by HIV-1 broadly neutralizing antibodies. Current Opinion in Immunology, 2016, 42, 56-64.	2.4	30
29	Functional Antibody Response Against V1V2 and V3 of HIV gp120 in the VAX003 and VAX004 Vaccine Trials. Scientific Reports, 2018, 8, 542.	1.6	30
30	Select gp120 V2 domain specific antibodies derived from HIV and SIV infection and vaccination inhibit gp120 binding to î±4î²7. PLoS Pathogens, 2018, 14, e1007278.	2.1	29
31	Vaccine-induced V1V2-specific antibodies control and or protect against infection with HIV, SIV and SHIV. Current Opinion in HIV and AIDS, 2019, 14, 309-317.	1.5	25
32	Structural Analysis of Human and Macaque mAbs 2909 and 2.5B: Implications for the Configuration of the Quaternary Neutralizing Epitope of HIV-1 gp120. Structure, 2011, 19, 691-699.	1.6	24
33	VSV-Displayed HIV-1 Envelope Identifies Broadly Neutralizing Antibodies Class-Switched to IgG and IgA. Cell Host and Microbe, 2020, 27, 963-975.e5.	5.1	23
34	Contrasting antibody responses to intrasubtype superinfection with CRF02_AG. PLoS ONE, 2017, 12, e0173705.	1.1	22
35	Modulation of Antibody Responses to the V1V2 and V3 Regions of HIV-1 Envelope by Immune Complex Vaccines. Frontiers in Immunology, 2018, 9, 2441.	2.2	22
36	Thermodynamic Signatures of the Antigen Binding Site of mAb 447–52D Targeting the Third Variable Region of HIV-1 gp120. Biochemistry, 2013, 52, 6249-6257.	1.2	21

XIANG-PENG KONG

#	Article	IF	CITATIONS
37	Sequential trafficking of Env and Gag to HIV-1 T cell virological synapses revealed by live imaging. Retrovirology, 2019, 16, 2.	0.9	21
38	Characteristics of the Phagocytic Cup Induced by Uropathogenic <i>Escherichia coli</i> . Journal of Histochemistry and Cytochemistry, 2008, 56, 597-604.	1.3	20
39	A new activity of anti-HIV and anti-tumor protein GAP31: DNA adenosine glycosidase – Structural and modeling insight into its functions. Biochemical and Biophysical Research Communications, 2010, 391, 340-345.	1.0	20
40	Single genome analysis reveals genetic characteristics of Neuroadaptation across HIV-1 envelope. Retrovirology, 2014, 11, 65.	0.9	20
41	Tau Antibody Structure Reveals a Molecular Switch Defining a Pathological Conformation of the Tau Protein. Scientific Reports, 2018, 8, 6209.	1.6	20
42	Structure-Based Functional Characterization of Repressor of Toxin (Rot), a Central Regulator of Staphylococcus aureus Virulence. Journal of Bacteriology, 2015, 197, 188-200.	1.0	19
43	Differential induction of anti-V3 crown antibodies with cradle- and ladle-binding modes in response to HIV-1 envelope vaccination. Vaccine, 2017, 35, 1464-1473.	1.7	15
44	Structural analysis of a novel rabbit monoclonal antibody R53 targeting an epitope in HIV-1 gp120 C4 region critical for receptor and co-receptor binding. Emerging Microbes and Infections, 2015, 4, 1-8.	3.0	14
45	Structural characterization of monoclonal antibodies targeting C-terminal Ser ⁴⁰⁴ region of phosphorylated tau protein. MAbs, 2019, 11, 477-488.	2.6	14
46	Immune Correlates of Disease Progression in Linked HIV-1 Infection. Frontiers in Immunology, 2019, 10, 1062.	2.2	14
47	Signal peptide of HIV-1 envelope modulates glycosylation impacting exposure of V1V2 and other epitopes. PLoS Pathogens, 2020, 16, e1009185.	2.1	14
48	Rationally Targeted Mutations at the V1V2 Domain of the HIV-1 Envelope to Augment Virus Neutralization by Anti-V1V2 Monoclonal Antibodies. PLoS ONE, 2015, 10, e0141233.	1.1	10
49	Functional and Structural Characterization of Human V3-Specific Monoclonal Antibody 2424 with Neutralizing Activity against HIV-1 JRFL. Journal of Virology, 2015, 89, 9090-9102.	1.5	10
50	Vaccine focusing to cross-subtype HIV-1 gp120 variable loop epitopes. Vaccine, 2014, 32, 4916-4924.	1.7	9
51	Increased Epitope Complexity Correlated with Antibody Affinity Maturation and a Novel Binding Mode Revealed by Structures of Rabbit Antibodies against the Third Variable Loop (V3) of HIV-1 gp120. Journal of Virology, 2018, 92, .	1.5	8
52	Structural Comparison of Human Anti-HIV-1 gp120 V3 Monoclonal Antibodies of the Same Gene Usage Induced by Vaccination and Chronic Infection. Journal of Virology, 2018, 92, .	1.5	7
53	Differential V2-directed antibody responses in non-human primates infected with SHIVs or immunized with diverse HIV vaccines. Nature Communications, 2022, 13, 903.	5.8	7
54	An HIV Vaccine Targeting the V2 Region of the HIV Envelope Induces a Highly Durable Polyfunctional Fc-Mediated Antibody Response in Rhesus Macaques. Journal of Virology, 2020, 94, .	1.5	6

XIANG-PENG KONG

#	Article	IF	CITATIONS
55	Priming with DNA Expressing Trimeric HIV V1V2 Alters the Immune Hierarchy Favoring the Development of V2-Specific Antibodies in Rhesus Macaques. Journal of Virology, 2020, 95, .	1.5	5
56	Mucosal Delivery of HIVâ€1 Glycoprotein Vaccine Candidate Enabled by Short Carbon Nanotubes. Particle and Particle Systems Characterization, 2022, 39, .	1.2	5
57	Determinants of HIV-1 CD4-Independent Brain Adaptation. Journal of Acquired Immune Deficiency Syndromes (1999), 2017, 76, 209-218.	0.9	4
58	Gp120 V5 Is Targeted by the First Wave of Sequential Neutralizing Antibodies in SHIVSF162P3N-Infected Rhesus Macaques. Viruses, 2018, 10, 262.	1.5	2
59	A large repertoire of B cell lineages targeting one cluster of epitopes in a vaccinated rhesus macaque. Vaccine, 2021, 39, 5607-5614.	1.7	2
60	A site of vulnerability at V3 crown defined by HIV-1 bNAb M4008_N1. Nature Communications, 2021, 12, 6464.	5.8	2
61	The light chain of antibodies specific to the V2 region of HIV-1 can determine their function. Human Immunology, 2021, 82, 923-929.	1.2	1
62	Structure of HIV-1 gp120 V1V2 in Complex with Human mAb 830A Reveals a 5-Stranded Beta Barrel Conformation and Integrin-binding Site. AIDS Research and Human Retroviruses, 2014, 30, A18-A19.	0.5	0
63	A Novel Trimeric V1V2-Scaffold Immunogen Induces V2q-Specific Antibody Responses. AIDS Research and Human Retroviruses, 2014, 30, A121-A121.	0.5	0
64	Computational-guided determination of the functional role of 447-52D long CDRH3. Protein Engineering, Design and Selection, 2018, 31, 479-487.	1.0	0
65	Multimeric Epitope-Scaffold HIV Vaccines Target V1V2 and Differentially Tune Polyfunctional Antibody Responses. SSRN Electronic Journal, 0, , .	0.4	0
66	Antiretroviral Imprints and Genomic Plasticity of HIV-1 pol in Non-clade B: Implications for Treatment. Frontiers in Microbiology, 2021, 12, 812391.	1.5	0
67	Biological Consequences of HIV $\hat{a} \in \mathbb{I}$ Interactions with Bacteria. FASEB Journal, 2022, 36, .	0.2	0