JesÃ^os M Seoane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3699694/publications.pdf

Version: 2024-02-01

		516710	501196
52	888	16	28
papers	citations	h-index	g-index
F2	F.2	F.2	409
53	53	53	498
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Noise activates escapes in closed Hamiltonian systems. Communications in Nonlinear Science and Numerical Simulation, 2022, 105, 106074.	3.3	3
2	Weak dissipation drives and enhances Wada basins in three-dimensional chaotic scattering. Chaos, Solitons and Fractals, 2022, 156, 111891.	5.1	1
3	Control of escapes in two-degree-of-freedom open Hamiltonian systems. Chaos, 2022, 32, 063118.	2.5	2
4	A mechanism explaining the metamorphoses of KAM islands in nonhyperbolic chaotic scattering. Nonlinear Dynamics, 2022, 109, 1123-1133.	5.2	1
5	Transient chaos in time-delayed systems subjected to parameter drift. Journal of Physics Complexity, 2021, 2, 025001.	2.2	4
6	Transient Dynamics of the Lorenz System with a Parameter Drift. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2021, 31, 2150029.	1.7	4
7	A SIR-type model describing the successive waves of COVID-19. Chaos, Solitons and Fractals, 2021, 144, 110682.	5.1	36
8	The effect of time ordering and concurrency in a mathematical model of chemoradiotherapy. Communications in Nonlinear Science and Numerical Simulation, 2021, 96, 105693.	3.3	8
9	Final state sensitivity in noisy chaotic scattering. Chaos, Solitons and Fractals, 2021, 150, 111181.	5.1	6
10	Trapping enhanced by noise in nonhyperbolic and hyperbolic chaotic scattering. Communications in Nonlinear Science and Numerical Simulation, 2021, 102, 105905.	3.3	3
11	Stochastic resetting in the Kramers problem: A Monte Carlo approach. Chaos, Solitons and Fractals, 2021, 152, 111342.	5.1	9
12	Ergodic decay laws in Newtonian and relativistic chaotic scattering. Communications in Nonlinear Science and Numerical Simulation, 2021, 103, 105987.	3.3	4
13	The role of noise in the tumor dynamics under chemotherapy treatment. European Physical Journal Plus, 2021, 136, 1.	2.6	4
14	Controlling Infectious Diseases: The Decisive Phase Effect on a Seasonal Vaccination Strategy. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2021, 31, .	1.7	3
15	Measuring the transition between nonhyperbolic and hyperbolic regimes in open Hamiltonian systems. Nonlinear Dynamics, 2020, 99, 3029-3039.	5.2	15
16	Tumor Stabilization Induced by T-Cell Recruitment Fluctuations. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2050179.	1.7	6
17	Influence of the gravitational radius on asymptotic behavior of the relativistic Sitnikov problem. Physical Review E, 2020, 102, 042204.	2.1	5
18	Fractional damping enhances chaos in the nonlinear Helmholtz oscillator. Nonlinear Dynamics, 2020, 102, 2323-2337.	5.2	7

#	Article	IF	CITATIONS
19	Transient chaos under coordinate transformations in relativistic systems. Physical Review E, 2020, 101, 062212.	2.1	3
20	Delay-Induced Resonance in the Time-Delayed Duffing Oscillator. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2030007.	1.7	19
21	The role of dose density in combination cancer chemotherapy. Communications in Nonlinear Science and Numerical Simulation, 2019, 79, 104918.	3.3	8
22	Nonlinear cancer chemotherapy: Modelling the Norton-Simon hypothesis. Communications in Nonlinear Science and Numerical Simulation, 2019, 70, 307-317.	3.3	17
23	Uncertainty dimension and basin entropy in relativistic chaotic scattering. Physical Review E, 2018, 97, 042214.	2.1	15
24	Stochastic resonance in dissipative drift motion. Communications in Nonlinear Science and Numerical Simulation, 2018, 54, 62-69.	3.3	11
25	Computing Complex Horseshoes by Means of Piecewise Maps. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2018, 28, 1830039.	1.7	1
26	Resonant behavior and unpredictability in forced chaotic scattering. Physical Review E, 2018, 98, .	2.1	10
27	Global relativistic effects in chaotic scattering. Physical Review E, 2017, 95, 032205.	2.1	9
28	Dynamics of the cell-mediated immune response to tumour growth. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160291.	3.4	20
29	The dose-dense principle in chemotherapy. Journal of Theoretical Biology, 2017, 430, 169-176.	1.7	15
30	Destruction of solid tumors by immune cells. Communications in Nonlinear Science and Numerical Simulation, 2017, 44, 390-403.	3.3	13
31	Bifurcation Analysis and Nonlinear Decay of a Tumor in the Presence of an Immune Response. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2017, 27, 1750223.	1.7	11
32	Decay Dynamics of Tumors. PLoS ONE, 2016, 11, e0157689.	2.5	12
33	Optimizing the Electrical Power in an Energy Harvesting System. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1550171.	1.7	17
34	Energy Harvesting Enhancement by Vibrational Resonance. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2014, 24, 1430019.	1.7	15
35	A Validated Mathematical Model of Tumor Growth Including Tumor–Host Interaction, Cell-Mediated Immune Response and Chemotherapy. Bulletin of Mathematical Biology, 2014, 76, 2884-2906.	1.9	51
36	Avoiding healthy cells extinction in a cancer model. Journal of Theoretical Biology, 2014, 349, 74-81.	1.7	21

#	Article	IF	Citations
37	Effects of periodic forcing in chaotic scattering. Physical Review E, 2014, 89, 042909.	2.1	10
38	Controlling unpredictability in the randomly driven Hénon–Heiles system. Communications in Nonlinear Science and Numerical Simulation, 2013, 18, 3449-3457.	3.3	16
39	Weakly noisy chaotic scattering. Physical Review E, 2013, 88, 032914.	2.1	14
40	New developments in classical chaotic scattering. Reports on Progress in Physics, 2013, 76, 016001.	20.1	81
41	Effective suppressibility of chaos. Chaos, 2013, 23, 023107.	2.5	1
42	PHASE CONTROL IN THE MASS-SPRING MODEL WITH NONSMOOTH STIFFNESS AND EXTERNAL EXCITATION. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2013, 23, 1330042.	1.7	2
43	PARTIAL CONTROL OF ESCAPES IN CHAOTIC SCATTERING. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2013, 23, 1350008.	1.7	5
44	TO ESCAPE OR NOT TO ESCAPE, THAT IS THE QUESTION â€" PERTURBING THE HÉNONâ€"HEILES HAMILTONI International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012, 22, 1230010.	AN _{1:7}	42
45	ESCAPING DYNAMICS IN THE PRESENCE OF DISSIPATION AND NOISE IN SCATTERING SYSTEMS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2010, 20, 2783-2793.	1.7	27
46	Effect of noise on chaotic scattering. Physical Review E, 2009, 79, 047202.	2.1	37
47	Exponential decay and scaling laws in noisy chaotic scattering. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 110-116.	2.1	52
48	Phase control of excitable systems. New Journal of Physics, 2008, 10, 073030.	2.9	22
49	Avoiding escapes in open dynamical systems using phase control. Physical Review E, 2008, 78, 016205.	2.1	27
50	Fractal dimension in dissipative chaotic scattering. Physical Review E, 2007, 76, 016208.	2.1	51
51	Symmetry-breaking analysis for the general Helmholtz–Duffing oscillator. Chaos, Solitons and Fractals, 2007, 34, 197-212.	5.1	52
52	Basin topology in dissipative chaotic scattering. Chaos, 2006, 16, 023101.	2.5	60