
Thomas Nann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3699681/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of CuCo2S4 nanoparticles assembled in micro-sized hollow spheres composed with polyaniline: An effective electrode material for supercapacitors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 276, 115578.	1.7	7
2	Mesoporous and defective activated carbon cathode for AlCl4â^' anion storage in non-aqueous aluminium-ion batteries. Carbon, 2022, 191, 195-204.	5.4	23
3	Unraveling the multivalent aluminium-ion redox mechanism in 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA). Physical Chemistry Chemical Physics, 2022, 24, 5886-5893.	1.3	3
4	Graphite-Mediated Microwave-Exfoliated Graphene Fluoride as Supercapacitor Electrodes. Nanomaterials, 2022, 12, 1796.	1.9	2
5	Novel devices for isolation and detection of bacterial and mammalian extracellular vesicles. Mikrochimica Acta, 2021, 188, 139.	2.5	6
6	A 2.7â€V Aqueous Supercapacitor Using a Microemulsion Electrolyte**. Batteries and Supercaps, 2021, 4, 1122-1125.	2.4	7
7	Green Synthesized Carbon Quantum Dots/Cobalt Sulfide Nanocomposite as Efficient Electrode Material for Supercapacitors. Energy & Fuels, 2021, 35, 9635-9645.	2.5	29
8	A Theoretical Framework for the Electrochemical Characterization of Anisotropic Microâ€Emulsions**. ChemElectroChem, 2021, 8, 3397-3409.	1.7	3
9	High Voltage Carbonâ€Based Cathodes for Nonâ€Aqueous Aluminiumâ€lon Batteries**. ChemElectroChem, 2021, 8, 492-499.	1.7	13
10	A C/V ₂ O ₅ core-sheath nanofibrous cathode with mixed-ion intercalation for aluminium-ion batteries. Nano Express, 2020, 1, 010016.	1.2	8
11	Suppressed self-discharge of an aqueous supercapacitor using Earth-abundant materials. Journal of Electroanalytical Chemistry, 2020, 871, 114307.	1.9	15
12	Highly efficient electrocatalytic hydrogen evolution promoted by O–Mo–C interfaces of ultrafine β-Mo ₂ C nanostructures. Chemical Science, 2020, 11, 3523-3530.	3.7	54
13	Electrospun, Oriented, Ferromagnetic Ni1-xFex Nanofibers. Frontiers in Chemistry, 2020, 8, 47.	1.8	2
14	Photometric Sensing of Active Chlorine, Total Chlorine, and pH on a Microfluidic Chip for Online Swimming Pool Monitoring. Sensors, 2020, 20, 3099.	2.1	18
15	On battery materials and methods. Materials Today Advances, 2020, 6, 100046.	2.5	81
16	Solid-Electrolyte Interphases (SEI) in Nonaqueous Aluminum-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 3673-3683.	2.5	17
17	Molybdenum Dichalcogenide Cathodes for Aluminumâ€lon Batteries. Energy Technology, 2020, 8, 2000038.	1.8	22
18	Rapid synthesis of defective and composition-controlled metal chalcogenide nanosheets by supercritical hydrothermal processing. Nanoscale Advances, 2019, 1, 3383-3387.	2.2	8

#	Article	IF	CITATIONS
19	Glucose Sensor Using Redox Active Oligonucleotide-Templated Silver Nanoclusters. Nanomaterials, 2019, 9, 1065.	1.9	5
20	An In Vitro Investigation of Cytotoxic Effects of InP/Zns Quantum Dots with Different Surface Chemistries. Nanomaterials, 2019, 9, 135.	1.9	28
21	Copper Metallopolymer Catalyst for the Electrocatalytic Hydrogen Evolution Reaction (HER). Polymers, 2019, 11, 110.	2.0	8
22	Improved uniaxial dielectric properties in aligned diisopropylammonium bromide (DIPAB) doped poly(vinylidene difluoride) (PVDF) nanofibers. RSC Advances, 2019, 9, 31233-31240.	1.7	5
23	Size-controlled, high optical quality ZnO nanowires grown using colloidal Au nanoparticles and ultra-small cluster catalysts. APL Materials, 2019, 7, 022518.	2.2	5
24	General Synthetic Strategy for Libraries of Supported Multicomponent Metal Nanoparticles. ACS Nano, 2018, 12, 4594-4604.	7.3	66
25	Unraveling aminophosphine redox mechanisms for glovebox-free InP quantum dot syntheses. Nanoscale, 2018, 10, 8752-8762.	2.8	36
26	CulnS2/ZnS QD-ferroelectric liquid crystal mixtures for faster electro-optical devices and their energy storage aspects. Journal of Applied Physics, 2018, 123, .	1.1	13
27	Demonstration of the lack of cytotoxicity of unmodified and folic acid modified graphene oxide quantum dots, and their application to fluorescence lifetime imaging of HaCaT cells. Mikrochimica Acta, 2018, 185, 128.	2.5	38
28	Cadmium-Free Quantum Dots as Fluorescent Labels for Exosomes. Sensors, 2018, 18, 3308.	2.1	22
29	Acetamide: a low-cost alternative to alkyl imidazolium chlorides for aluminium-ion batteries. Chemical Communications, 2018, 54, 11725-11728.	2.2	48
30	Conducting Copper(I/II)-Metallopolymer for the Electrocatalytic Oxygen Reduction Reaction (ORR) with High Kinetic Current Density. Polymers, 2018, 10, 1002.	2.0	6
31	"Exosomicsâ€â€"A Review of Biophysics, Biology and Biochemistry of Exosomes With a Focus on Human Breast Milk. Frontiers in Genetics, 2018, 9, 92.	1.1	143
32	Editorial Announcement. Nanomaterials, 2018, 8, 12.	1.9	12
33	Electrospun Composites of Polycaprolactone and Porous Silicon Nanoparticles for the Tunable Delivery of Small Therapeutic Molecules. Nanomaterials, 2018, 8, 205.	1.9	13
34	Carbon Nanotubes in TiO ₂ Nanofiber Photoelectrodes for Highâ€Performance Perovskite Solar Cells. Advanced Science, 2017, 4, 1600504.	5.6	83
35	Heterogeneity in the fluorescence of graphene and graphene oxide quantum dots. Mikrochimica Acta, 2017, 184, 871-878.	2.5	47
36	Apparatus for the investigation of high-temperature, high-pressure gas-phase heterogeneous catalytic and photo-catalytic materials. Review of Scientific Instruments, 2017, 88, 054101.	0.6	4

#	Article	IF	CITATIONS
37	Trends in Aluminiumâ€Based Intercalation Batteries. Advanced Energy Materials, 2017, 7, 1602093.	10.2	181
38	Disperse-and-Collect Approach for the Type-Selective Detection of Matrix Metalloproteinases in Porous Silicon Resonant Microcavities. ACS Sensors, 2017, 2, 203-209.	4.0	11
39	Platinum Terpyridine Metallopolymer Electrode as Cost-Effective Replacement for Bulk Platinum Catalysts in Oxygen Reduction Reaction and Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2017, 5, 10206-10214.	3.2	27
40	Electroactive Polyhydroquinone Coatings for Marine Fouling Prevention—A Rejected Dynamic pH Hypothesis and a Deceiving Artifact in Electrochemical Antifouling Testing. ACS Omega, 2017, 2, 4751-4759.	1.6	5
41	Electrospinning of Photocatalytic Electrodes for Dye-sensitized Solar Cells. Journal of Visualized Experiments, 2017, , .	0.2	2
42	Deposition Methods of Graphene as Electrode Material for Organic Solar Cells. Advanced Energy Materials, 2017, 7, 1601393.	10.2	56
43	{Ni4O4} Cluster Complex to Enhance the Reductive Photocurrent Response on Silicon Nanowire Photocathodes. Nanomaterials, 2017, 7, 33.	1.9	2
44	3D Micro-printing of Optical Temperature Probes. NATO Science for Peace and Security Series B: Physics and Biophysics, 2017, , 475-475.	0.2	0
45	Silicon Nanowire Photocathodes for Photoelectrochemical Hydrogen Production. Nanomaterials, 2016, 6, 144.	1.9	12
46	The Power of Heterogeneity: Parameter Relationships from Distributions. PLoS ONE, 2016, 11, e0155718.	1.1	5
47	Graphene Quantum Dots for Theranostics and Bioimaging. Pharmaceutical Research, 2016, 33, 2337-2357.	1.7	118
48	Microfluidic Chip for the Photocatalytic Production of Active Chlorine. Langmuir, 2016, 32, 4952-4958.	1.6	15
49	Catalytically Active Bimetallic Nanoparticles Supported on Porous Carbon Capsules Derived From Metal–Organic Framework Composites. Journal of the American Chemical Society, 2016, 138, 11872-11881.	6.6	237
50	Photo-doping of plasma-deposited polyaniline (PAni). RSC Advances, 2016, 6, 70691-70699.	1.7	27
51	Investigation of porous silicon photocathodes for photoelectrochemical hydrogen production. International Journal of Hydrogen Energy, 2016, 41, 19915-19920.	3.8	8
52	SWCNT photocathodes sensitised with InP/ZnS core–shell nanocrystals. Journal of Materials Chemistry C, 2016, 4, 3379-3384.	2.7	15
53	A TiO2Nanofiber-Carbon Nanotube-Composite Photoanode for Improved Efficiency in Dye-Sensitized Solar Cells. ChemSusChem, 2015, 8, 3351-3351.	3.6	1
54	Doping Group IIB Metal Ions into Quantum Dot Shells via the Oneâ€Pot Decomposition of Metalâ€Dithiocarbamates. Advanced Optical Materials, 2015, 3, 704-712.	3.6	19

#	Article	IF	CITATIONS
55	A TiO ₂ Nanofiber–Carbon Nanotube omposite Photoanode for Improved Efficiency in Dyeâ€&ensitized Solar Cells. ChemSusChem, 2015, 8, 3396-3400.	3.6	43
56	Polyethyleneimine for copper absorption II: kinetics, selectivity and efficiency from seawater. RSC Advances, 2015, 5, 51883-51890.	1.7	54
57	Intestinal absorption of fluorescently labeled nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1169-1178.	1.7	16
58	Boron-Doped Silicon Diatom Frustules as a Photocathode for Water Splitting. ACS Applied Materials & Interfaces, 2015, 7, 17381-17387.	4.0	26
59	CuInS ₂ /ZnS nanocrystals as sensitisers for NiO photocathodes. Journal of Materials Chemistry A, 2015, 3, 13324-13331.	5.2	35
60	Rapid microwave assisted synthesis of nearly monodisperse aqueous CuInS ₂ /ZnS nanocrystals. CrystEngComm, 2015, 17, 7820-7823.	1.3	6
61	Three-dimensional micro-printing of temperature sensors based on up-conversion luminescence. Applied Physics Letters, 2015, 106, .	1.5	39
62	Porous silicon nanoparticles as a nanophotocathode for photoelectrochemical water splitting. RSC Advances, 2015, 5, 85978-85982.	1.7	20
63	Comparison of selenophene and thienothiophene incorporation into pentacyclic lactam-based conjugated polymers for organic solar cells. Polymer Chemistry, 2015, 6, 7402-7409.	1.9	6
64	Selective assembly of Au-Fe3O4 nanoparticle hetero-dimers. Mikrochimica Acta, 2015, 182, 2293-2298.	2.5	10
65	Nanostructured silicon photoelectrodes for solar water electrolysis. Nano Energy, 2015, 17, 308-322.	8.2	45
66	Monofunctionalization and Dimerization of Nanoparticles Using Coordination Chemistry. ACS Nano, 2015, 9, 1434-1439.	7.3	17
67	NiO Nanofibers as a Candidate for a Nanophotocathode. Nanomaterials, 2014, 4, 256-266.	1.9	49
68	Photoresponsive properties of ultrathin silicon nanowires. Applied Physics Letters, 2014, 105, 231116.	1.5	22
69	Fluorescence Lifetime Analysis of Graphene Quantum Dots. Journal of Physical Chemistry C, 2014, 118, 30282-30290.	1.5	31
70	Graphene Quantum Dots. Particle and Particle Systems Characterization, 2014, 31, 415-428.	1.2	787
71	Controlled synthesis and characterization of iron oxide nanostructures with potential applications for gas sensors and the environment. RSC Advances, 2014, 4, 6383.	1.7	29
72	A highly efficient ligand exchange reaction on gold nanoparticles: preserving their size, shape and colloidal stability. RSC Advances, 2014, 4, 34217-34220.	1.7	58

#	Article	IF	CITATIONS
73	Cation exchange of aqueous CuInS ₂ quantum dots. CrystEngComm, 2014, 16, 9455-9460.	1.3	21
74	A quantum dot sensitized catalytic porous silicon photocathode. Journal of Materials Chemistry A, 2014, 2, 9478-9481.	5.2	38
75	Copperâ€Doped CdSe/ZnS Quantum Dots: Controllable Photoactivated Copper(I) Cation Storage and Release Vectors for Catalysis. Angewandte Chemie - International Edition, 2014, 53, 1598-1601.	7.2	58
76	Gas-sensing properties of p-type α-Fe2O3 polyhedral particles synthesized via a modified polyol method. RSC Advances, 2014, 4, 8250.	1.7	38
77	Synthesis and Phase Transfer of Monodisperse Iron Oxide (Fe3O4) Nanocubes. Australian Journal of Chemistry, 2014, 67, 663.	0.5	15
78	Silicon diatom frustules as nanostructured photoelectrodes. Chemical Communications, 2014, 50, 10441.	2.2	55
79	InP/ZnS Nanocrystals as Fluorescent Probes for the Detection of ATP. Nanomaterials and Nanotechnology, 2014, 4, 15.	1.2	6
80	<i>In-situ</i> local temperature measurement during three-dimensional direct laser writing. Applied Physics Letters, 2013, 103, .	1.5	66
81	In-Situ Local Temperature Measurement During Three-Dimensional Direct Laser Writing. , 2013, , .		0
82	Insights into the Mechanism of Quantum Dot-Sensitized Singlet Oxygen Production for Photodynamic Therapy. Journal of Physical Chemistry C, 2012, 116, 9334-9342.	1.5	65
83	InP nanowires from surfactant-free thermolysis of single molecule precursors. Dalton Transactions, 2012, 41, 7244.	1.6	5
84	On the Use of pH Titration to Quantitatively Characterize Colloidal Nanoparticles. Langmuir, 2012, 28, 15141-15149.	1.6	38
85	Quantum Dots for Electro-Optic Devices. ACS Nano, 2011, 5, 5291-5295.	7.3	76
86	In Vivo Applications of Inorganic Nanoparticles. , 2011, , 185-220.		5
87	Another Journal on Nanomaterials?. Nanomaterials, 2011, 1, 1-2.	1.9	11
88	Quantum Dot Sensitized Photoelectrodes. Nanomaterials, 2011, 1, 79-88.	1.9	19
89	Monodisperse upconversion GdF3:Yb, Er rhombi by microwave-assisted synthesis. Nanoscale Research Letters, 2011, 6, 267.	3.1	23
90	A Thin Silica–Polymer Shell for Functionalizing Colloidal Inorganic Nanoparticles. Angewandte Chemie - International Edition, 2011, 50, 10384-10387.	7.2	16

#	Article	IF	CITATIONS
91	Nanoparticles in Photodynamic Therapy. Nano Biomedicine and Engineering, 2011, 3, .	0.3	36
92	Electrophoretic properties of BSA-coated quantum dots. Analytical and Bioanalytical Chemistry, 2010, 396, 1087-1094.	1.9	36
93	Use of Nanoparticles to Study and Manipulate Plant cells. Advanced Engineering Materials, 2010, 12, B406.	1.6	18
94	Water Splitting by Visible Light: A Nanophotocathode for Hydrogen Production. Angewandte Chemie - International Edition, 2010, 49, 1574-1577.	7.2	189
95	Nanocrystals and Nanoparticles Versus Molecular Fluorescent Labels as Reporters for Bioanalysis and the Life Sciences: A Critical Comparison. Springer Series on Fluorescence, 2010, , 3-40.	0.8	7
96	Plasmon-Enhanced Upconversion in Single NaYF ₄ :Yb ³⁺ /Er ³⁺ Codoped Nanocrystals. Nano Letters, 2010, 10, 134-138.	4.5	444
97	Upconverting Nanoparticles. Springer Series on Fluorescence, 2010, , 115-132.	0.8	9
98	Size and shape evolution of upconverting nanoparticles using microwave assisted synthesis. CrystEngComm, 2010, 12, 1993.	1.3	34
99	Synthesis and exploitation of InP/ZnS quantum dots for bioimaging. , 2009, , .		2
100	Calibration-free concentration determination of charged colloidal nanoparticles and determination of effective charges by capillary isotachophoresis. Analytical and Bioanalytical Chemistry, 2009, 395, 1681-1691.	1.9	33
101	Monodisperse Upconverting Nanocrystals by Microwave-Assisted Synthesis. ACS Nano, 2009, 3, 3804-3808.	7.3	195
102	Fluorescence Lifetime Multiplexing with Nanocrystals and Organic Labels. Analytical Chemistry, 2009, 81, 7807-7813.	3.2	52
103	Optical and Surface Characterisation of Capping Ligands in the Preparation of InP/ZnS Quantum Dots. Science of Advanced Materials, 2009, 1, 125-137.	0.1	12
104	Silica coated quantum dots: a new tool for electrochemical and optical glucose detection. Mikrochimica Acta, 2008, 160, 375-383.	2.5	41
105	Organometallic synthesis and electrophoretic characterization of high-quality ZnS:Mn/ZnS core/shell nanoparticles for bioanalytical applications. Mikrochimica Acta, 2008, 160, 351-356.	2.5	20
106	(Primarily semiconducting) nanocrystals: from fundamental research to electro-optical devices and biosensors. Mikrochimica Acta, 2008, 160, 297-298.	2.5	2
107	Electrochemical determination of mesoscopic phenomena, defect states in CdSe nanocrystals and charge carrier manipulability. Mikrochimica Acta, 2008, 160, 299-308.	2.5	35
108	Blue shift of CdSe/ZnS nanocrystal-labels upon DNA-hybridization. Journal of Nanobiotechnology, 2008, 6, 7.	4.2	30

Thomas Nann

#	Article	IF	CITATIONS
109	Synthesis and Spectroscopic Characterization of Fluorescent Blueâ€Emitting Ultrastable CdSe Clusters. Small, 2008, 4, 883-887.	5.2	42
110	Silica oated InP/ZnS Nanocrystals as Converter Material in White LEDs. Advanced Materials, 2008, 20, 4068-4073.	11.1	284
111	A Four-Color Colloidal Multiplexing Nanoparticle System. ACS Nano, 2008, 2, 120-124.	7.3	315
112	Rapid synthesis of highly luminescent InP and InP/ZnS nanocrystals. Journal of Materials Chemistry, 2008, 18, 2653.	6.7	279
113	<i>Stability and Fluorescence Quantum Yield of CdSe–ZnS Quantum Dots—Influence of the Thickness of the ZnS Shell</i> . Annals of the New York Academy of Sciences, 2008, 1130, 235-241.	1.8	76
114	<i>Acoustically Levitated Droplets</i> . Annals of the New York Academy of Sciences, 2008, 1130, 78-84.	1.8	7
115	Quantum dots versus organic dyes as fluorescent labels. Nature Methods, 2008, 5, 763-775.	9.0	3,331
116	ISOTACHOPHORETIC MEASUREMENTS OF LUMINESCENT SEMICONDUCTOR NANOCRYSTALS. Biophysical Reviews and Letters, 2007, 02, 99-108.	0.9	7
117	Colloidal quantum dots in high-Q pillar microcavities. , 2007, , .		0
118	Colloidal Quantum Dots in High-Q Pillar Microcavities. , 2007, , .		0
119	Isotachophoretic measurements of luminescent semiconductor nanocrystals. International Journal of Nanotechnology, 2007, 4, 298.	0.1	3
120	High-Quality ZnS Shells for CdSe Nanoparticles:  Rapid Microwave Synthesis. Langmuir, 2007, 23, 7751-7759.	1.6	59
121	Colloidal Quantum Dots in All-Dielectric High- <i>Q</i> Pillar Microcavities. Nano Letters, 2007, 7, 2897-2900.	4.5	68
122	Hollow Silica Nanospheres:  In situ, Semi-In situ, and Two-Step Synthesis. Chemistry of Materials, 2007, 19, 1700-1703.	3.2	73
123	Au–silica nanoparticles by "reverse―synthesis of cores in hollow silica shells. Chemical Communications, 2007, , 2031-2033.	2.2	41
124	Quantitative Analysis of Cadmium Selenide Nanocrystal Concentration by Comparative Techniques. Analytical Chemistry, 2007, 79, 8987-8993.	3.2	43
125	Direct Immunofluorescence of Plant Microtubules Based on Semiconductor Nanocrystals. Bioconjugate Chemistry, 2007, 18, 1879-1886.	1.8	22
126	Fluorescence-Emission Control of Single CdSe Nanocrystals Using Gold-Modified AFM Tips. Small, 2007, 3, 44-49.	5.2	28

#	Article	IF	CITATIONS
127	Quantum confinement of the thermodynamic functions for the formation of electrons and holes in CdSe nanocrystals. Journal of Applied Physics, 2006, 100, 074314.	1.1	5
128	Synthesis and Spectroscopic Investigations of Cu- and Pb-Doped Colloidal ZnS Nanocrystals. Journal of Physical Chemistry B, 2006, 110, 23175-23178.	1.2	49
129	Silica coated, water dispersible and photoluminescent Y (V,P)O4:Eu3+,Bi3+nanophosphors. Nanotechnology, 2006, 17, 4168-4173.	1.3	54
130	One-pot synthesis of YF3@silica core/shell nanoparticles. Chemical Communications, 2006, , 776.	2.2	44
131	Rapid Synthesis of High-Quality InP Nanocrystals. Journal of the American Chemical Society, 2006, 128, 1054-1055.	6.6	173
132	Silica Encapsulation of Hydrophobically Ligated PbSe Nanocrystals. Langmuir, 2006, 22, 4371-4375.	1.6	56
133	Shape Control of II–VI Semiconductor Nanomaterials. Small, 2006, 2, 316-329.	5.2	365
134	Read-out concepts for multiplexed bead-based fluorescence immunoassays on centrifugal microfluidic platforms. Sensors and Actuators A: Physical, 2006, 126, 455-462.	2.0	69
135	A facile method for coding and labeling assays on polystyrene beads with differently colored luminescent nanocrystals. Analytical and Bioanalytical Chemistry, 2006, 384, 645-650.	1.9	32
136	Heterogeneous Charge Transfer of Colloidal Nanocrystals in Ionic Liquids. ChemPhysChem, 2006, 7, 77-81.	1.0	25
137	Combined TIRF-AFM setup: controlled quenching of individual quantum dots. , 2006, , .		1
138	Electrophoretic analysis of gold nanoparticles: size-dependent electrophoretic mobility of nanoparticles. IET Nanobiotechnology, 2006, 153, 47.	2.1	32
139	Synthesis and electrochemical properties of InP nanocrystals. Journal of Materials Research, 2006, 21, 543-546.	1.2	9
140	Deep level defect luminescence in cadmium selenide nano-crystals films. Journal of Crystal Growth, 2005, 280, 502-508.	0.7	45
141	Single Quantum Dots in Silica Spheres by Microemulsion Synthesis. Chemistry of Materials, 2005, 17, 5720-5725.	3.2	357
142	Synthesis and Structural Metastability of CdTe Nanowires. Chemistry - A European Journal, 2005, 11, 2220-2224.	1.7	38
143	An electrochemical biomimetic ATP-sensor. Sensors and Actuators B: Chemical, 2005, 104, 111-116.	4.0	14

#	Article	IF	CITATIONS
145	Excitation Dependence of Steady-State Photoluminescence in CdSe Nanocrystal Films. Journal of Physical Chemistry B, 2005, 109, 15349-15354.	1.2	14
146	Determination of Defect States in Semiconductor Nanocrystals by Cyclic Voltammetry. Journal of Physical Chemistry B, 2005, 109, 20355-20360.	1.2	85
147	Phase-transfer of CdSe@ZnS quantum dots using amphiphilic hyperbranched polyethylenimine. Chemical Communications, 2005, , 1735.	2.2	138
148	Nanostructured <i>p–n</i> Junctions for Printable Photovoltaics. MRS Bulletin, 2004, 29, 43-47.	1.7	11
149	First solar cells based on CdTe nanoparticle/MEH-PPV composites. Journal of Materials Research, 2004, 19, 1990-1994.	1.2	85
150	Application of luminescent nanocrystals as labels for biological molecules. Analytical and Bioanalytical Chemistry, 2004, 379, 913-9.	1.9	111
151	Single Quantum Dots in Spherical Silica Particles. Angewandte Chemie - International Edition, 2004, 43, 5393-5396.	7.2	249
152	Origin of permanent electric dipole moments in wurtzite nanocrystals. Chemical Physics Letters, 2004, 384, 150-152.	1.2	81
153	Charge transfer efficiency in hybrid bulk heterojunction composites. Journal of Chemical Physics, 2004, 121, 1074-1079.	1.2	13
154	Charge transfer mechanism in hybrid bulk heterojunction composites. Journal of Chemical Physics, 2004, 120, 1500-1505.	1.2	40
155	Simulation in electrochemistry using the finite element method part 2: scanning electrochemical microscopy. Electrochimica Acta, 2003, 48, 3975-3980.	2.6	42
156	Determination of quantum confinement in CdSe nanocrystals by cyclic voltammetry. Journal of Chemical Physics, 2003, 119, 2333-2337.	1.2	257
157	Hexagonal CdTe nanoparticles of various morphologies. Chemical Communications, 2003, , 2478.	2.2	44
158	Visualizing the Self-Assembly of Tubulin with Luminescent Nanorods. Journal of Nanoscience and Nanotechnology, 2003, 3, 380-385.	0.9	44
159	Monodisperse CdSe Nanorods at Low Temperatures. Chemistry - A European Journal, 2002, 8, 4791-4795.	1.7	44
160	Electrochemical metallization of self-assembled porphyrin monolayers. Analytical and Bioanalytical Chemistry, 2002, 373, 749-753.	1.9	10
161	Deposition of hydroquinone-thiosulfate on gold by means of anodic oxidation. Journal of Electroanalytical Chemistry, 2001, 505, 125-132.	1.9	7
162	Development of Receptor Based Affinity Microassay. , 2001, , 366-369.		0

#	Article	IF	CITATIONS
163	A new dynamic hydrogen reference electrode for applications in thin-film sensor systems. Sensors and Actuators B: Chemical, 2000, 70, 188-195.	4.0	11
164	Simulation in electrochemistry using the finite element methodPart 1: The algorithm. Electrochemistry Communications, 1999, 1, 289-294.	2.3	69
165	Semiconductor nanoparticles: new building blocks for polymer-microelectronics?. , 0, , .		1
166	Parallelization of chip-based fluorescence immuno-assays with quantum-dot labelled beads. , 0, , .		2