Erdmann Spiecker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3699612/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Covalent bulk functionalization of graphene. Nature Chemistry, 2011, 3, 279-286.	6.6	596
2	A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science, 2017, 358, 1192-1197.	6.0	554
3	Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nature Nanotechnology, 2020, 15, 668-674.	15.6	541
4	Black TiO ₂ Nanotubes: Cocatalyst-Free Open-Circuit Hydrogen Generation. Nano Letters, 2014, 14, 3309-3313.	4.5	417
5	Overcoming the Interface Losses in Planar Heterojunction Perovskiteâ€Based Solar Cells. Advanced Materials, 2016, 28, 5112-5120.	11.1	188
6	"Black―TiO ₂ Nanotubes Formed by High-Energy Proton Implantation Show Noble-Metal- <i>co</i> -Catalyst Free Photocatalytic H ₂ -Evolution. Nano Letters, 2015, 15, 6815-6820.	4.5	174
7	Epitaxial Growth of PbSe Quantum Dots on MoS ₂ Nanosheets and their Nearâ€Infrared Photoresponse. Advanced Functional Materials, 2014, 24, 5798-5806.	7.8	134
8	Non ovalent Chemistry of Graphene: Electronic Communication with Dendronized Perylene Bisimides. Advanced Materials, 2010, 22, 5483-5487.	11.1	120
9	Advanced Scale Bridging Microstructure Analysis of Single Crystal Niâ€Base Superalloys. Advanced Engineering Materials, 2015, 17, 216-230.	1.6	117
10	Bioactive glass (type 45S5) nanoparticles: in vitro reactivity on nanoscale and biocompatibility. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	114
11	Butterfly gyroid nanostructures as a time-frozen glimpse of intracellular membrane development. Science Advances, 2017, 3, e1603119.	4.7	109
12	Planar defect formation in the γ′ phase during high temperature creep in single crystal CoNi-base superalloys. Acta Materialia, 2016, 113, 335-349.	3.8	108
13	On the diffusive phase transformation mechanism assisted by extended dislocations during creep of a single crystal CoNi-based superalloy. Acta Materialia, 2018, 155, 362-371.	3.8	89
14	Strain-activated light-induced halide segregation in mixed-halide perovskite solids. Nature Communications, 2020, 11, 6328.	5.8	86
15	On the grain boundary strengthening effect of boron in γ/γ′ Cobalt-base superalloys. Acta Materialia, 2018, 145, 247-254.	3.8	73
16	The process of solid-state dewetting of Au thin films studied by in situ scanning transmission electron microscopy. Acta Materialia, 2015, 90, 118-132.	3.8	71
17	Encapsulation of silver nanowire networks by atomic layer deposition for indium-free transparent electrodes. Nano Energy, 2015, 16, 196-206.	8.2	68
18	Local temperature measurement in TEM by parallel beam electron diffraction. Ultramicroscopy, 2017, 176, 161-169.	0.8	67

#	Article	IF	CITATIONS
19	Organic and perovskite solar modules innovated by adhesive top electrode and depth-resolved laser patterning. Energy and Environmental Science, 2016, 9, 2302-2313.	15.6	64
20	Photophysics of Molecularâ€Weightâ€Induced Losses in Indacenodithienothiopheneâ€Based Solar Cells. Advanced Functional Materials, 2015, 25, 4898-4907.	7.8	61
21	Coexistence of both gyroid chiralities in individual butterfly wing scales of <i>Callophrys rubi</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12911-12916.	3.3	58
22	Thermophysical and Mechanical Properties of Advanced Single Crystalline Co-base Superalloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 4099-4109.	1.1	58
23	High efficiency and stability small molecule solar cells developed by bulk microstructure fine-tuning. Nano Energy, 2016, 28, 241-249.	8.2	57
24	Suppression of Hysteresis Effects in Organohalide Perovskite Solar Cells. Advanced Materials Interfaces, 2017, 4, 1700007.	1.9	57
25	Unravelling the Mechanisms of Gold–Silver Core–Shell Nanostructure Formation by in Situ TEM Using an Advanced Liquid Cell Design. Nano Letters, 2018, 18, 7222-7229.	4.5	57
26	Early stages of scale formation during oxidation of γ / γ ′ strengthened single crystal ternary Co-base superalloy at 900†°C. Corrosion Science, 2018, 135, 78-86.	3.0	56
27	Elemental segregation to antiphase boundaries in a crept CoNi-based single crystal superalloy. Scripta Materialia, 2018, 157, 62-66.	2.6	48
28	Tension/Compression asymmetry of a creep deformed single crystal Co-base superalloy. Acta Materialia, 2019, 166, 597-610.	3.8	48
29	Broadband NIR photoluminescence from Ni ²⁺ -doped nanocrystalline Ba–Al titanate glass ceramics. Journal of Materials Chemistry, 2012, 22, 2582-2588.	6.7	47
30	Interface Molecular Engineering for Laminated Monolithic Perovskite/Silicon Tandem Solar Cells with 80.4% Fill Factor. Advanced Functional Materials, 2019, 29, 1901476.	7.8	43
31	Crack healing induced electrical and mechanical properties recovery in a Ti 2 SnC ceramic. Journal of the European Ceramic Society, 2016, 36, 25-32.	2.8	42
32	Inducing a Nanotwinned Grain Structure within the TiO ₂ Nanotubes Provides Enhanced Electron Transport and DSSC Efficiencies >10%. Advanced Energy Materials, 2018, 8, 1800981.	10.2	42
33	A comprehensive study on the mechanism behind formation and depletion of Cu ₂ ZnSnS ₄ (CZTS) phases. CrystEngComm, 2015, 17, 6972-6984.	1.3	37
34	Influence of anisotropic elasticity on the mechanical properties of fivefold twinned nanowires. Journal of the Mechanics and Physics of Solids, 2015, 84, 358-379.	2.3	37
35	Mechanical cleaning of graphene using in situ electron microscopy. Nature Communications, 2020, 11, 1743.	5.8	36
36	Pushing PbS/Metalâ€Halideâ€Perovskite Core/Epitaxial‣igandâ€Shell Nanocrystal Photodetectors beyond 3 µm Wavelength. Advanced Functional Materials, 2019, 29, 1807964.	7.8	35

#	Article	IF	CITATIONS
37	Combining Atomistic Simulation and X-ray Diffraction for the Characterization of Nanostructures: A Case Study on Fivefold Twinned Nanowires. ACS Nano, 2014, 8, 1629-1638.	7.3	34
38	In situ manipulation and switching of dislocations in bilayer graphene. Science Advances, 2018, 4, eaat4712.	4.7	33
39	Accessing local electron-beam induced temperature changes during <i>in situ</i> liquid-phase transmission electron microscopy. Nanoscale Advances, 2021, 3, 2466-2474.	2.2	30
40	Uniform Surface Modification of 3D Bioglass®-Based Scaffolds with Mesoporous Silica Particles (MCM-41) for Enhancing Drug Delivery Capability. Frontiers in Bioengineering and Biotechnology, 2015, 3, 177.	2.0	29
41	Segregation-assisted climb of Frank partial dislocations: An alternative route to superintrinsic stacking faults in L12-hardened superalloys. Acta Materialia, 2020, 191, 270-279.	3.8	26
42	Reduced grey brookite for noble metal free photocatalytic H ₂ evolution. Journal of Materials Chemistry A, 2021, 9, 1168-1179.	5.2	26
43	Texture evolution and microstructural changes during solid-state dewetting: A correlative study by complementary in situ TEM techniques. Acta Materialia, 2016, 115, 230-241.	3.8	23
44	In Situ Liquid Cell TEM Studies on Etching and Growth Mechanisms of Gold Nanoparticles at a Solid–Liquid–Gas Interface. Advanced Materials Interfaces, 2019, 6, 1901027.	1.9	23
45	Microscopic Deformation Modes and Impact of Network Anisotropy on the Mechanical and Electrical Performance of Five-fold Twinned Silver Nanowire Electrodes. ACS Nano, 2021, 15, 362-376.	7.3	23
46	The effects of post-processing on the surface and the optical properties of copper indium sulfide quantum dots. Journal of Colloid and Interface Science, 2015, 445, 337-347.	5.0	22
47	Early stages of high-temperature oxidation of Ni- and Co-base model superalloys: A comparative study using rapid thermal annealing and advanced electron microscopy. Corrosion Science, 2021, 191, 109744.	3.0	22
48	Epitaxial Metal Halide Perovskites by Inkjetâ€Printing on Various Substrates. Advanced Functional Materials, 2020, 30, 2004612.	7.8	21
49	ZnS Ultrathin Interfacial Layers for Optimizing Carrier Management in Sb ₂ S ₃ -based Photovoltaics. ACS Applied Materials & Interfaces, 2021, 13, 11861-11868.	4.0	20
50	Well-separated water-soluble carbon dots <i>via</i> gradient chromatography. Nanoscale, 2021, 13, 13116-13128.	2.8	19
51	Grain boundary mediated plasticity: A blessing for the ductility of metallic thin films?. Acta Materialia, 2021, 215, 117079.	3.8	18
52	On the identification of superdislocations in the γ′-phase of single-crystal Ni-base superalloys – An application of the LACBED method to complex microstructures. Acta Materialia, 2015, 87, 34-44.	3.8	17
53	Insights into fundamental deformation processes from advanced in situ transmission electron microscopy. MRS Bulletin, 2019, 44, 443-449.	1.7	16
54	Assembling Mesoscale‣tructured Organic Interfaces in Perovskite Photovoltaics. Advanced Materials, 2019, 31, e1806516.	11.1	16

#	Article	IF	CITATIONS
55	Yielding behavior of a single-crystalline γ'-strengthened Co-Ti-Cr superalloy. Scripta Materialia, 2021, 200, 113928.	2.6	16
56	A significant cathodic shift in the onset potential of photoelectrochemical water splitting for hematite nanostructures grown from Fe–Si alloys. Materials Horizons, 2014, 1, 344-347.	6.4	15
57	Deformation behavior of nanocrystalline titania particles accessed by complementary inÂsitu electron microscopy techniques. Journal of the American Ceramic Society, 2017, 100, 5709-5722.	1.9	15
58	Radiolysisâ€Driven Evolution of Gold Nanostructures – Model Verification by Scale Bridging In Situ Liquidâ€Phase Transmission Electron Microscopy and Xâ€Ray Diffraction. Advanced Science, 2022, 9, .	5.6	15
59	Direct observation of dislocation formation and plastic anisotropy in Nb2AlC MAX phase using in situ nanomechanics in transmission electron microscopy. Scripta Materialia, 2017, 137, 104-108.	2.6	14
60	Understanding the Role of Surface Charge in Cellular Uptake and X-ray-Induced ROS Enhancing of Au–Fe ₃ O ₄ Nanoheterodimers. ACS Applied Bio Materials, 2018, 1, 2002-2011.	2.3	14
61	Determination of 3D electrostatic field at an electron nano-emitter. Applied Physics Letters, 2019, 114, 013101.	1.5	14
62	Effect of the Counteranion on the Formation Pathway of Cu ₂ ZnSnS ₄ (CZTS) Nanoparticles under Solvothermal Conditions. Inorganic Chemistry, 2020, 59, 1973-1984.	1.9	14
63	Quantification of the temperature-dependent evolution of defect structures in a CoNi-base superalloy. Acta Materialia, 2022, 227, 117702.	3.8	14
64	A flexible method for the preparation of thin film samples for in situ TEM characterization combining shadow-FIB milling and electron-beam-assisted etching. Ultramicroscopy, 2016, 171, 82-88.	0.8	13
65	Memory Effect of Selfâ€Assembled PSâ€ <i>b</i> â€PEO Block Copolymer Films with Selectively Embedded Functionalized TiO ₂ Nanoparticles. Advanced Materials Interfaces, 2017, 4, 1700230.	1.9	13
66	Transforming layered MoS ₂ into functional MoO ₂ nanowires. Nanoscale, 2019, 11, 11687-11695.	2.8	12
67	LPE growth of Tb ₃ Al ₅ O ₁₂ :Ce single crystalline film converters for WLED application. CrystEngComm, 2021, 23, 3212-3219.	1.3	12
68	A New Crystal Phase Molybdate Yb ₂ Mo ₄ O ₁₅ : The Synthesis and Upconversion Properties. Particle and Particle Systems Characterization, 2015, 32, 340-346.	1.2	11
69	Correlative micro-diffraction and differential phase contrast study of mean inner potential and subtle beam-specimen interaction. Ultramicroscopy, 2017, 176, 233-245.	0.8	11
70	Impact of N Incorporation on VLS Growth of GaP(N) Nanowires Utilizing UDMH. Nanoscale Research Letters, 2018, 13, 417.	3.1	11
71	In Vitro Endothelialization of Surface-Integrated Nanofiber Networks for Stretchable Blood Interfaces. ACS Applied Materials & Interfaces, 2019, 11, 5740-5751.	4.0	11
72	Correlative Laboratory Nanoâ€CT and 360° Electron Tomography of Macropore Structures in Hierarchical Zeolites. Advanced Materials Interfaces, 2021, 8, 2001154.	1.9	11

#	Article	IF	CITATIONS
73	Effect of size and shape on the elastic modulus of metal nanowires. MRS Advances, 2021, 6, 665-673.	0.5	11
74	Scavenging of bacteria or bacterial products by magnetic particles functionalized with a broad-spectrum pathogen recognition receptor motif offers diagnostic and therapeutic applications. Acta Biomaterialia, 2022, 141, 418-428.	4.1	11
75	Area‣elective Growth of HfS ₂ Thin Films via Atomic Layer Deposition at Low Temperature. Advanced Materials Interfaces, 2020, 7, 2001493.	1.9	10
76	Rapid fabrication and interface structure of highly faceted epitaxial Ni-Au solid solution nanoparticles on sapphire. Acta Materialia, 2021, 220, 117318.	3.8	10
77	Intrinsic nano-diffusion-couple for studying high temperature diffusion in multi-component superalloys. Scripta Materialia, 2021, 192, 120-124.	2.6	8
78	Noncovalent Liquid Phase Functionalization of 2H-WS ₂ with PDI: An Energy Conversion Platform with Long-Lived Charge Separation. Journal of the American Chemical Society, 2022, 144, 5834-5840.	6.6	8
79	Understanding and Controlling the Evolution of Nanomorphology and Crystallinity of Organic Bulkâ€Heterojunction Blends with Solvent Vapor Annealing. Solar Rrl, 2022, 6, .	3.1	8
80	Nanoscale distribution of Bi atoms in InP1â´'xBix. Scientific Reports, 2017, 7, 12278.	1.6	7
81	Low temperature solid-state wetting and formation of nanowelds in silver nanowires. Nanotechnology, 2017, 28, 385701.	1.3	7
82	Fabrication and structural characterization of diamond-coated tungsten tips. Diamond and Related Materials, 2019, 97, 107446.	1.8	7
83	Collecting up to 115% of Singlet-Fission Products by Single-Walled Carbon Nanotubes. ACS Nano, 2020, 14, 8875-8886.	7.3	7
84	Unraveling the Complex Nanomorphology of Ternary Organic Solar Cells with Multimodal Analytical Transmission Electron Microscopy. Solar Rrl, 2020, 4, 2000114.	3.1	7
85	Unraveling Structural Details in Ga-Pd SCALMS Systems Using Correlative Nano-CT, 360° Electron Tomography and Analytical TEM. Catalysts, 2021, 11, 810.	1.6	7
86	Hydrogenated anatase TiO ₂ single crystals: defects formation and structural changes as microscopic origin of co-catalyst free photocatalytic H ₂ evolution activity. Journal of Materials Chemistry A, 2021, 9, 24932-24942.	5.2	7
87	Overcoming Temperatureâ€Induced Degradation of Silver Nanowire Electrodes by an Ag@SnO _x Coreâ€6hell Approach. Advanced Electronic Materials, 2022, 8, .	2.6	7
88	Preparation of Graphene-Supported Microwell Liquid Cells for In Situ Transmission Electron Microscopy. Journal of Visualized Experiments, 2019, , .	0.2	6
89	Buried Microphase Separation by Dynamic Interplay of Crystallization and Microphase Separation in Semicrystalline PEO-Rich PS- <i>b</i> -PEO Block Copolymer Thin Films. Macromolecules, 2020, 53, 5604-5613.	2.2	6
90	Crystal-structure of active layers of small molecule organic photovoltaics before and after solvent vapor annealing. Zeitschrift Fur Kristallographie - Crystalline Materials, 2020, 235, 15-28.	0.4	6

#	Article	IF	CITATIONS
91	Exploring the Preparation Dependence of Crystalline 2D-Extended Ultrathin C8-BTBT-C8 Films. ACS Applied Materials & Interfaces, 2022, 14, 16830-16838.	4.0	6
92	Sub-Kelvin thermometry for evaluating the local temperature stability within in situ TEM gas cells. Ultramicroscopy, 2022, 235, 113494.	0.8	6
93	Seeing structural evolution of organic molecular nano-crystallites using 4D scanning confocal electron diffractionÂ(4D-SCED). Nature Communications, 2022, 13, .	5.8	6
94	Phase evolution of Cu ₂ ZnSnS ₄ (CZTS) nanoparticles from <i>in situ</i> formed binary sulphides under solvothermal conditions. CrystEngComm, 2021, 23, 7944-7954.	1.3	5
95	Pressure induced local phase transformation in nanocrystalline tetragonal zirconia microparticles. Scripta Materialia, 2019, 163, 86-90.	2.6	4
96	Correlative Nanoâ€Computed Tomography and Focused Ionâ€Beam Sectioning: A Case Study on a Coâ€Base Superalloy Oxide Scale. Advanced Engineering Materials, 2020, 22, 1900823.	1.6	4
97	Efficient charge-transfer from diketopyrrolopyrroles to single-walled carbon nanotubes. Nanoscale, 2021, 13, 11544-11551.	2.8	4
98	Distinct endocytosis and immune activation of poly(lactic-co-glycolic) acidÂnanoparticles prepared by single- and double-emulsion evaporation. Nanomedicine, 2021, 16, 2075-2094.	1.7	4
99	Pt–Fe ₃ O ₄ , Pd–Fe ₃ O ₄ , and Au–Fe ₃ O ₄ Nanoheterodimers and Their Efficacy as Radiosensitizers in Cancer Therapy. ACS Applied Bio Materials, 2021, 4, 7879-7892.	2.3	4
100	Unraveling Complexity: A Strategy for the Characterization of Anisotropic Core Multishell Nanoparticles. Particle and Particle Systems Characterization, 2020, 37, 2000145.	1.2	3
101	Structural characterization of α,ï‰-DH6T monolayer films grown at the liquid–liquid interface. Soft Matter, 2021, 17, 9765-9771.	1.2	3
102	Creep properties and deformation mechanisms of single-crystalline <i>γ</i> ′-strengthened superalloys in dependence of the Co/Ni ratio. Philosophical Magazine, 2022, 102, 718-744.	0.7	3
103	Atomically resolved TEM imaging of covalently functionalised graphene. Npj 2D Materials and Applications, 2022, 6, .	3.9	3
104	Epitaxial upward transport of Al at the beginning of the Alâ€induced layer exchange process. Physica Status Solidi - Rapid Research Letters, 2011, 5, 172-174.	1.2	2
105	Lowâ€ŧemperature oxidationâ€ɨnduced crack healing in Ti 2 Al 0.5 Sn 0.5 C–Al 2 O 3 composites. International Journal of Applied Ceramic Technology, 2019, 16, 1744-1751.	1.1	2
106	Facile one-pot synthesis of water-soluble fcc FePt3 alloy nanostructures. SN Applied Sciences, 2020, 2, 1.	1.5	2
107	Comprehensive, multidimensional and correlative particle characterization of a saxolite and talcum compound to support the understanding of complex separation processes. Microscopy and Microanalysis, 2021, 27, 934-937.	0.2	2
108	Atomic Structure and Chemical Composition of Planar Fault Structures in Co-Base Superalloys. Minerals, Metals and Materials Series, 2020, , 920-928.	0.3	2

#	Article	IF	CITATIONS
109	The effect of Î ³ matrix channel width on the compositional evolution in a multi-component nickel-based superalloy. Scripta Materialia, 2022, 219, 114853.	2.6	2
110	Publisher's note. Ultramicroscopy, 2017, 177, 1-13.	0.8	1
111	Nanoparticles: In Situ Liquid Cell TEM Studies on Etching and Growth Mechanisms of Gold Nanoparticles at a Solid–Liquid–Gas Interface (Adv. Mater. Interfaces 20/2019). Advanced Materials Interfaces, 2019, 6, 1970126.	1.9	1
112	In situ chip-based heating studies of metal-induced layer exchange and Si crystallization using STEM, LEND and SE imaging in SEM. Microscopy and Microanalysis, 2021, 27, 2696-2698.	0.2	1
113	Extending lab-based X-ray nanotomography of low Z and porous materials to larger sample volumes without compromising resolution. Microscopy and Microanalysis, 2021, 27, 1218-1221.	0.2	1
114	Modelling the Radiolysis of Silver Nitrate Solutions in presence of Bromide Ions in Liquid-Phase Transmission Electron Microscopy. Microscopy and Microanalysis, 2021, 27, 103-104.	0.2	1
115	Germanium Template Assisted Integration of Gallium Arsenide Nanocrystals on Silicon: A Versatile Platform for Modern Optoelectronic Materials. Advanced Optical Materials, 2018, 6, 1701329.	3.6	0
116	Scanning Transmission Electron Microscopy and Diffraction in SEM: Novel Approaches for In Situ Studies. Microscopy and Microanalysis, 2019, 25, 25-26.	0.2	0
117	Early stages of phase decomposition in NiAu alloy thin films studied by in situ TEM using ultrafast quenching methods. Microscopy and Microanalysis, 2021, 27, 2692-2694.	0.2	0
118	Diffraction contrast analysis of dislocations in 2D materials using true dark-field and 4D-STEM in SEM. Microscopy and Microanalysis, 2021, 27, 1816-1819.	0.2	0
119	Combining in situ heating with transmission diffraction and imaging in SEM for investigation of early stages of solid-state dewetting. Microscopy and Microanalysis, 2021, 27, 1052-1054.	0.2	0
120	Multi-modal characterization of collagen fibril orientation in human cortical bone by a combination of quantitative polarized Raman spectroscopy, nanoscale X-ray computed tomography and 360° electron tomography. Microscopy and Microanalysis, 2021, 27, 96-101.	0.2	0
121	Correlative Zernike phase contrast X-ray nanotomography to determine the distribution and orientation of graphite particles in a carbon fiber reinforced epoxy resin for improved thermal conductivity. Microscopy and Microanalysis, 2021, 27, 944-946.	0.2	0
122	Correlative relationship between nanomorphology, crystallinity, texture and device efficiency of organic BHJ solar cells studied by energy-filtered TEM. Microscopy and Microanalysis, 2021, 27, 390-392.	0.2	0
123	Scanning confocal electron diffraction (SCED): high angular resolution diffraction imaging with order-of-magnitude improved dose efficiency. Microscopy and Microanalysis, 2021, 27, 194-197.	0.2	0
124	Beam-induced heating at low electron fluxes during liquid phase transmission electron microscopy. Microscopy and Microanalysis, 2021, 27, 1040-1042.	0.2	0
125	A scale-bridging study of the influence of TCP phases on the mechanical properties of an additive manufactured Ni-base superalloy combining microcompression testing, X-ray nanotomography and TEM. Microscopy and Microanalysis, 2021, 27, 938-942.	0.2	0