## Nathaniel A Bates

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3699375/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Arthrogenic muscle inhibition manifests in thigh musculature motor unit characteristics after anterior cruciate ligament injury. European Journal of Sport Science, 2023, 23, 840-850.                                                             | 2.7 | 9         |
| 2  | Are 6-Month Functional and Isokinetic Testing Measures Risk Factors for Second Anterior Cruciate<br>Ligament Injuries at Long-T Follow-Up?. Journal of Knee Surgery, 2023, 36, 1060-1068.                                                          | 1.6 | 3         |
| 3  | Filtration Selection and Data Consilience: Distinguishing Signal from Artefact with Mechanical<br>Impact Simulator Data. Annals of Biomedical Engineering, 2021, 49, 334-344.                                                                      | 2.5 | 2         |
| 4  | Anterior Cruciate Ligament Loading Increases With Pivot-Shift Mechanism During Asymmetrical Drop<br>Vertical Jump in Female Athletes. Orthopaedic Journal of Sports Medicine, 2021, 9, 232596712198909.                                            | 1.7 | 8         |
| 5  | High school female basketball athletes exhibit decreased kneeâ€specific choice visualâ€motor reaction<br>time. Scandinavian Journal of Medicine and Science in Sports, 2021, 31, 1699-1707.                                                        | 2.9 | 7         |
| 6  | Mechanics of cadaveric anterior cruciate ligament reconstructions during simulated jump landing tasks: Lessons learned from a pilot investigation. Clinical Biomechanics, 2021, 86, 105372.                                                        | 1.2 | 5         |
| 7  | Hamstrings Contraction Regulates the Magnitude and Timing of the Peak ACL Loading During the Drop<br>Vertical Jump in Female Athletes. Orthopaedic Journal of Sports Medicine, 2021, 9, 232596712110344.                                           | 1.7 | 6         |
| 8  | Effects of Sex and Age on Quadriceps and Hamstring Strength and Flexibility in High School Basketball<br>Athletes. International Journal of Sports Physical Therapy, 2021, 16, 1302-1312.                                                          | 1.3 | 1         |
| 9  | Diminished neuromuscular system adaptability following anterior cruciate ligament injury:<br>Examination of knee muscle force variability and complexity. Clinical Biomechanics, 2021, 90, 105513.                                                 | 1.2 | 9         |
| 10 | Prospective Frontal Plane Angles Used to Predict ACL Strain and Identify Those at High Risk for<br>Sports-Related ACL Injury. Orthopaedic Journal of Sports Medicine, 2020, 8, 232596712095764.                                                    | 1.7 | 22        |
| 11 | Sex differences in passive and active stiffness of the knee flexor muscles during dynamic perturbation test: principal component analysis. Somatosensory & Motor Research, 2020, 37, 293-299.                                                      | 0.9 | 0         |
| 12 | Linear Discriminant Analysis Successfully Predicts Knee Injury Outcome From Biomechanical Variables.<br>American Journal of Sports Medicine, 2020, 48, 2447-2455.                                                                                  | 4.2 | 7         |
| 13 | High school male basketball athletes exhibit greater hamstring muscle stiffness than females as<br>assessed with shear wave elastography. Skeletal Radiology, 2020, 49, 1231-1237.                                                                 | 2.0 | 15        |
| 14 | In vivo attachment site to attachment site length and strain of the ACL and its bundles during the full<br>gait cycle measure by MRI and high-speed biplanar radiography. (Published Jan. 2, 2020). Journal of<br>Biomechanics, 2020, 109, 109922. | 2.1 | 0         |
| 15 | Analysis of Internal Knee Forces Allows for the Prediction of Rupture Events in a Clinically Relevant<br>Model of Anterior Cruciate Ligament Injuries. Orthopaedic Journal of Sports Medicine, 2020, 8,<br>232596711989375.                        | 1.7 | 17        |
| 16 | Timing of Strain Response of the ACL and MCL Relative to Impulse Delivery During Simulated Landings<br>Leading up to ACL Failure. Journal of Applied Biomechanics, 2020, 36, 148-155.                                                              | 0.8 | 21        |
| 17 | Thigh musculature stiffness during active muscle contraction after anterior cruciate ligament<br>injury. BMC Musculoskeletal Disorders, 2020, 21, 320.                                                                                             | 1.9 | 6         |
| 18 | ANALYSIS OF TIMING OF SECONDARY ACL INJURY IN PROFESSIONAL ATHLETES DOES NOT SUPPORT GAME<br>TIMING OR SEASON TIMING AS A CONTRIBUTOR TO INJURY RISK. International Journal of Sports Physical<br>Therapy, 2020, 15, 254-262.                      | 1.3 | 3         |

NATHANIEL A BATES

| #  | Article                                                                                                                                                                                                                               | lF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | INVESTIGATION OF PRIMARY AND SECOND ANTERIOR CRUCIATE LIGAMENT TEARS USING A GEOGRAPHIC DATABASE. International Journal of Sports Physical Therapy, 2020, 15, 593-602.                                                                | 1.3 | 1         |
| 20 | Influence of relative injury risk profiles on anterior cruciate ligament and medial collateral ligament<br>strain during simulated landing leading to a noncontact injury event. Clinical Biomechanics, 2019, 69,<br>44-51.           | 1.2 | 10        |
| 21 | Frontal Plane Loading Characteristics of Medial Collateral Ligament Strain Concurrent With<br>Anterior Cruciate Ligament Failure. American Journal of Sports Medicine, 2019, 47, 2143-2150.                                           | 4.2 | 26        |
| 22 | Multiplanar Loading of the Knee and Its Influence on Anterior Cruciate Ligament and Medial<br>Collateral Ligament Strain During Simulated Landings and Noncontact Tears. American Journal of<br>Sports Medicine, 2019, 47, 1844-1853. | 4.2 | 59        |
| 23 | Paradoxical relationship in sensorimotor system: Knee joint position sense absolute error and joint stiffness measures. Clinical Biomechanics, 2019, 67, 34-37.                                                                       | 1.2 | 5         |
| 24 | Knee Abduction and Internal Rotation Moments Increase ACL Force During Landing Through the Posterior Slope of the Tibia. Journal of Orthopaedic Research, 2019, 37, 1730-1742.                                                        | 2.3 | 47        |
| 25 | Variation in ACL and MCL Strain Before Initial Contact Is Dependent on Injury Risk Level During<br>Simulated Landings. Orthopaedic Journal of Sports Medicine, 2019, 7, 232596711988490.                                              | 1.7 | 9         |
| 26 | External loads associated with anterior cruciate ligament injuries increase the correlation between tibial slope and ligament strain during in vitro simulations of in vivo landings. Clinical Biomechanics, 2019, 61, 84-94.         | 1.2 | 21        |
| 27 | Effects of localized vibration on knee joint position sense in individuals with anterior cruciate ligament reconstruction. Clinical Biomechanics, 2018, 55, 40-44.                                                                    | 1.2 | 13        |
| 28 | The influence of internal and external tibial rotation offsets on knee joint and ligament biomechanics during simulated athletic tasks. Clinical Biomechanics, 2018, 52, 109-116.                                                     | 1.2 | 9         |
| 29 | Sex-Based Differences of Medial Collateral Ligament and Anterior Cruciate Ligament Strains With<br>Cadaveric Impact Simulations. Orthopaedic Journal of Sports Medicine, 2018, 6, 232596711876521.                                    | 1.7 | 21        |
| 30 | Sex-Based Differences in Knee Kinetics With Anterior Cruciate Ligament Strain on Cadaveric Impact<br>Simulations. Orthopaedic Journal of Sports Medicine, 2018, 6, 232596711876103.                                                   | 1.7 | 27        |
| 31 | Effects of Population Variability on Knee Loading During Simulated Human Gait. Annals of Biomedical<br>Engineering, 2018, 46, 284-297.                                                                                                | 2.5 | 3         |
| 32 | Relative dearth of †̃sex differences' research in sports medicine. Journal of Science and Medicine in Sport, 2018, 21, 440-441.                                                                                                       | 1.3 | 15        |
| 33 | Modeling of ACL Injury Mechanism. Medicine and Science in Sports and Exercise, 2018, 50, 106.                                                                                                                                         | 0.4 | Ο         |
| 34 | Effects of Localized Vibration on Knee Joint Position Sense in Individuals with ACL-Reconstruction.<br>Medicine and Science in Sports and Exercise, 2018, 50, 254.                                                                    | 0.4 | 0         |
| 35 | Validation of Noncontact Anterior Cruciate Ligament Tears Produced by a Mechanical Impact<br>Simulator Against the Clinical Presentation of Injury. American Journal of Sports Medicine, 2018, 46,<br>2113-2121.                      | 4.2 | 37        |
| 36 | Robotic simulation of identical athletic-task kinematics on cadaveric limbs exhibits a lack of<br>differences in knee mechanics between contralateral pairs. Journal of Biomechanics, 2017, 53, 36-44.                                | 2.1 | 8         |

NATHANIEL A BATES

| #  | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Effect of sagittal plane mechanics on ACL strain during jump landing. Journal of Orthopaedic<br>Research, 2017, 35, 1171-1172.                                                                                                                      | 2.3 | 6         |
| 38 | Preventive Biomechanics: A Paradigm Shift With a Translational Approach to Injury Prevention.<br>American Journal of Sports Medicine, 2017, 45, 2654-2664.                                                                                          | 4.2 | 67        |
| 39 | Incidence of Second Anterior Cruciate Ligament Tears (1990-2000) and Associated Factors in a Specific<br>Geographic Locale. American Journal of Sports Medicine, 2017, 45, 1567-1573.                                                               | 4.2 | 43        |
| 40 | Knee Abduction Affects Greater Magnitude of Change in ACL and MCL Strains Than Matched Internal<br>Tibial Rotation In Vitro. Clinical Orthopaedics and Related Research, 2017, 475, 2385-2396.                                                      | 1.5 | 45        |
| 41 | Novel mechanical impact simulator designed to generate clinically relevant anterior cruciate ligament ruptures. Clinical Biomechanics, 2017, 44, 36-44.                                                                                             | 1.2 | 37        |
| 42 | Incidence of Second Anterior Cruciate Ligament Tears and Identification of Associated Risk Factors<br>From 2001 to 2010 Using a Geographic Database. Orthopaedic Journal of Sports Medicine, 2017, 5,<br>232596711772419.                           | 1.7 | 91        |
| 43 | How Anterior Cruciate Ligament Injury was averted during Knee Collapse in a NBA Point Guard. , 2017,<br>1, 008-12.                                                                                                                                  |     | 1         |
| 44 | Posterior Tibial Slope Angle Correlates With Peak Sagittal and Frontal Plane Knee Joint Loading<br>During Robotic Simulations of Athletic Tasks. American Journal of Sports Medicine, 2016, 44, 1762-1770.                                          | 4.2 | 20        |
| 45 | Motion Analysis and the Anterior Cruciate Ligament: Classification of Injury Risk. Journal of Knee<br>Surgery, 2016, 29, 117-125.                                                                                                                   | 1.6 | 25        |
| 46 | Characteristics of inpatient anterior cruciate ligament reconstructions and concomitant injuries.<br>Knee Surgery, Sports Traumatology, Arthroscopy, 2016, 24, 2778-2786.                                                                           | 4.2 | 36        |
| 47 | Sex-based differences in knee ligament biomechanics during robotically simulated athletic tasks.<br>Journal of Biomechanics, 2016, 49, 1429-1436.                                                                                                   | 2.1 | 18        |
| 48 | Impacts of Robotic Compliance and Bone Bending on Simulated Knee Kinematics. American Journal of<br>Biomedical Engineering, 2016, 6, 12-18.                                                                                                         | 0.9 | 1         |
| 49 | Reliability of 3-Dimensional Measures of Single-Leg Drop Landing Across 3 Institutions: Implications for Multicenter Research for Secondary ACL-Injury Prevention. Journal of Sport Rehabilitation, 2015, 24, 198-209.                              | 1.0 | 28        |
| 50 | Reliability of 3-Dimensional Measures of Single-Leg Cross Drop Landing Across 3 Different<br>Institutions. Orthopaedic Journal of Sports Medicine, 2015, 3, 232596711561790.                                                                        | 1.7 | 9         |
| 51 | Relative Strain in the Anterior Cruciate Ligament and Medial Collateral Ligament During Simulated<br>Jump Landing and Sidestep Cutting Tasks. American Journal of Sports Medicine, 2015, 43, 2259-2269.                                             | 4.2 | 43        |
| 52 | A Novel Methodology for the Simulation of Athletic Tasks on Cadaveric Knee Joints with Respect to In<br>Vivo Kinematics. Annals of Biomedical Engineering, 2015, 43, 2456-2466.                                                                     | 2.5 | 24        |
| 53 | Prediction of Kinematic and Kinetic Performance in a Drop Vertical Jump with Individual<br>Anthropometric Factors in Adolescent Female Athletes: Implications for Cadaveric Investigations.<br>Annals of Biomedical Engineering, 2015, 43, 929-936. | 2.5 | 4         |
| 54 | Anterior cruciate ligament biomechanics during robotic and mechanical simulations of physiologic and clinical motion tasks: A systematic review and meta-analysis. Clinical Biomechanics, 2015, 30, 1-13.                                           | 1.2 | 62        |

NATHANIEL A BATES

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Dynamic Balance in Children: Performance Comparison Between Two Testing Devices. Athletic Training<br>& Sports Health Care, 2015, 7, 160-164.                                                                                            | 0.4 | 9         |
| 56 | Reliability of Three-Dimensional Biomechanics Across Three Different Institutions. Medicine and Science in Sports and Exercise, 2014, 46, 961.                                                                                           | 0.4 | 0         |
| 57 | Feasibility and reliability of dynamic postural control measures in children in first through fifth grades. International Journal of Sports Physical Therapy, 2014, 9, 140-8.                                                            | 1.3 | 35        |
| 58 | Consistency of clinical biomechanical measures between three different institutions: implications for<br>multi-center biomechanical and epidemiological research. International Journal of Sports Physical<br>Therapy, 2014, 9, 289-301. | 1.3 | 7         |
| 59 | The validity of 2-dimensional measurement of trunk angle during dynamic tasks. International Journal of Sports Physical Therapy, 2014, 9, 420-7.                                                                                         | 1.3 | 13        |
| 60 | Reduced hip strength is associated with increased hip motion during running in young adult and<br>adolescent male long-distance runners. International Journal of Sports Physical Therapy, 2014, 9,<br>456-67.                           | 1.3 | 19        |
| 61 | Timing differences in the generation of ground reaction forces between the initial and secondary landing phases of the drop vertical jump. Clinical Biomechanics, 2013, 28, 796-799.                                                     | 1.2 | 41        |
| 62 | Kinetic and kinematic differences between first and second landings of a drop vertical jump task:<br>Implications for injury risk assessments. Clinical Biomechanics, 2013, 28, 459-466.                                                 | 1.2 | 74        |
| 63 | Impact differences in ground reaction force and center of mass between the first and second landing phases of a drop vertical jump and their implications for injury risk assessment. Journal of Biomechanics, 2013, 46, 1237-1241.      | 2.1 | 110       |
| 64 | Correlating Knee Characteristics and Dynamic Load to Customize Gait Simulation In Vitro. , 2013, , .                                                                                                                                     |     | 0         |
| 65 | Arthrometric curve-shape variables to assess anterior cruciate ligament deficiency. Clinical Biomechanics, 2012, 27, 830-836.                                                                                                            | 1.2 | 9         |