Tom Maniatis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3699294/publications.pdf Version: 2024-02-01

		766	3402
184	66,554	119	183
papers	citations	h-index	g-index
191	191	191	52220
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex. Journal of Neuroscience, 2014, 34, 11929-11947.	1.7	4,119
2	IKKÎμ and TBK1 are essential components of the IRF3 signaling pathway. Nature Immunology, 2003, 4, 491-496.	7.0	2,361
3	The ubiquitinproteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB. Cell, 1994, 78, 773-785.	13.5	2,117
4	The isolation of structural genes from libraries of eucaryotic DNA. Cell, 1978, 15, 687-701.	13.5	2,037
5	Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science, 2020, 370, .	6.0	1,749
6	Transcriptional regulation of endothelial cell adhesion molecules: NFâ€₽̂B and cytokineâ€inducible enhancers. FASEB Journal, 1995, 9, 899-909.	0.2	1,614
7	Transformation of mammalian cells with genes from procaryotes and eucaryotes. Cell, 1979, 16, 777-785.	13.5	1,613
8	NF-κB: A lesson in family values. Cell, 1995, 80, 529-532.	13.5	1,273
9	The MicroRNA miR-124 Promotes Neuronal Differentiation by Triggering Brain-Specific Alternative Pre-mRNA Splicing. Molecular Cell, 2007, 27, 435-448.	4.5	1,235
10	ldentification of two distinct regulatory regions adjacent to the human β-interferon gene. Cell, 1983, 34, 865-879.	13.5	1,205
11	Transcriptional activation: A complex puzzle with few easy pieces. Cell, 1994, 77, 5-8.	13.5	1,155
12	The isolation and characterization of linked β- and β-globin genes from a cloned library of human DNA. Cell, 1978, 15, 1157-1174.	13.5	1,113
13	An extensive network of coupling among gene expression machines. Nature, 2002, 416, 499-506.	13.7	1,030
14	Virus induction of human IFNÎ ² gene expression requires the assembly of an enhanceosome. Cell, 1995, 83, 1091-1100.	13.5	953
15	Site-Specific Phosphorylation of lκBα by a Novel Ubiquitination-Dependent Protein Kinase Activity. Cell, 1996, 84, 853-862.	13.5	945
16	CRISPR Inversion of CTCF Sites Alters Genome Topology and Enhancer/Promoter Function. Cell, 2015, 162, 900-910.	13.5	846
17	NF-kappaB signaling pathways in mammalian and insect innate immunity. Genes and Development, 2001, 15, 2321-2342.	2.7	824
18	Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science, 2015, 347, 1436-1441.	6.0	823

#	Article	IF	CITATIONS
19	[31] Detection and localization of single base changes by denaturing gradient gel electrophoresis. Methods in Enzymology, 1987, 155, 501-527.	0.4	816
20	Excision of an intact intron as a novel lariat structure during pre-mRNA splicing in vitro. Cell, 1984, 38, 317-331.	13.5	804
21	Non–cell autonomous effect of glia on motor neurons in an embryonic stem cell–based ALS model. Nature Neuroscience, 2007, 10, 608-614.	7.1	727
22	Factor required for mammalian spliceosome assembly is localized to discrete regions in the nucleus. Nature, 1990, 343, 437-441.	13.7	726
23	Activation of the lκBα Kinase Complex by MEKK1, a Kinase of the JNK Pathway. Cell, 1997, 88, 213-222.	13.5	721
24	Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell, 1993, 75, 1061-1070.	13.5	711
25	Normal and mutant human β-globin pre-mRNAs are faithfully and efficiently spliced in vitro. Cell, 1984, 36, 993-1005.	13.5	710
26	Alternative pre-mRNA splicing and proteome expansion in metazoans. Nature, 2002, 418, 236-243.	13.7	705
27	Identification of DNA sequences required for transcription of the human $\hat{l}\pm 1$ -globin gene in a new SV40 host-vector system. Cell, 1981, 27, 279-288.	13.5	701
28	Virus Infection Induces the Assembly of Coordinately Activated Transcription Factors on the IFN-β Enhancer In Vivo. Molecular Cell, 1998, 1, 507-518.	4.5	686
29	Ordered Recruitment of Chromatin Modifying and General Transcription Factors to the IFN-β Promoter. Cell, 2000, 103, 667-678.	13.5	683
30	A Striking Organization of a Large Family of Human Neural Cadherin-like Cell Adhesion Genes. Cell, 1999, 97, 779-790.	13.5	659
31	Structure-based prediction of protein–protein interactions on a genome-wide scale. Nature, 2012, 490, 556-560.	13.7	652
32	Specific transcription and RNA splicing defects in five cloned β-thalassaemia genes. Nature, 1983, 302, 591-596.	13.7	651
33	The High Mobility Group protein HMG I(Y) is required for NF-κB-dependent virus induction of the human IFN-β gene. Cell, 1992, 71, 777-789.	13.5	651
34	The role of small nuclear ribonucleoprotein particles in pre-mRNA splicing. Nature, 1987, 325, 673-678.	13.7	641
35	Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Research, 1985, 13, 3131-3145.	6.5	558
36	Human β-globin pre-mRNA synthesized in vitro is accurately spliced in xenopus oocyte nuclei. Cell, 1983, 32, 681-694.	13.5	556

#	Article	IF	CITATIONS
37	The chromosomal arrangement of human α-like globin genes: Sequence homology and α-globin gene deletions. Cell, 1980, 20, 119-130.	13.5	547
38	An Atomic Model of the Interferon-Î ² Enhanceosome. Cell, 2007, 129, 1111-1123.	13.5	547
39	The involvement of NF- \hat{i}^{P} B in \hat{i}^{2} -interferon gene regulation reveals its role as widely inducible mediator of signal transduction. Cell, 1989, 57, 287-294.	13.5	525
40	Axonal Transport of TDP-43 mRNA Granules Is Impaired by ALS-Causing Mutations. Neuron, 2014, 81, 536-543.	3.8	521
41	IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 233-238.	3.3	518
42	A role for exon sequences and splice-site proximity in splice-site selection. Cell, 1986, 46, 681-690.	13.5	496
43	Multiple factors including the small nuclear ribonucleoproteins U1 and U2 are necessary for Pre-mRNA splicing in vitro. Cell, 1985, 42, 725-736.	13.5	479
44	GAL4 activates transcription in Drosophila. Nature, 1988, 332, 853-856.	13.7	468
45	Mechanisms of transcriptional synergism between distinct virus-inducible enhancer elements. Cell, 1993, 74, 887-898.	13.5	463
46	Molecular cloning and characterization of the human β-like globin gene cluster. Cell, 1980, 19, 959-972.	13.5	460
47	Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nature Methods, 2013, 10, 421-426.	9.0	459
48	Transcriptional activation of cloned human β-globin genes by viral immediate-early gene products. Cell, 1983, 35, 137-148.	13.5	456
49	The primary structure of rabbit \hat{l}^2 -globin mRNA as determined from cloned DNA. Cell, 1977, 10, 571-586.	13.5	454
50	The human \hat{l}^2 -interferon gene enhancer is under negative control. Cell, 1986, 45, 601-610.	13.5	441
51	Intron sequences involved in lariat formation during pre-mRNA splicing. Cell, 1985, 41, 95-105.	13.5	416
52	Protocadherins mediate dendritic self-avoidance in the mammalian nervous system. Nature, 2012, 488, 517-521.	13.7	394
53	MEKK1 activates both lκB kinase α and lκB kinase β. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9319-9324.	3.3	384
54	Detection of single base substitutions in total genomic DNA. Nature, 1985, 313, 495-498.	13.7	376

#	Article	IF	CITATIONS
55	A single-base change at a splice site in a βO-thalassemic gene causes abnormal RNA splicing. Cell, 1982, 29, 903-911.	13.5	375
56	A splicing enhancer complex controls alternative splicing of doublesex pre-mRNA. Cell, 1993, 74, 105-114.	13.5	346
57	Differences in human α- and β-globin gene expression in mouse erythroleukemia cells: The role of intragenic sequences. Cell, 1984, 38, 251-263.	13.5	341
58	The proteasome pathway is required for cytokine-induced endothelial-leukocyte adhesion molecule expression. Immunity, 1995, 2, 493-506.	6.6	341
59	Enzymatic in vitro synthesis of globin genes. Cell, 1976, 7, 279-288.	13.5	338
60	The structure of the human zeta-globin gene and a closely linked, nearly identical pseudogene. Cell, 1982, 31, 553-563.	13.5	331
61	IKKε Is Part of a Novel PMA-Inducible IκB Kinase Complex. Molecular Cell, 2000, 5, 513-522.	4.5	328
62	The Mechanism of Transcriptional Synergy of an In Vitro Assembled Interferon-β Enhanceosome. Molecular Cell, 1997, 1, 119-129.	4.5	325
63	Generation of p50 subunit of NF-kB by processing of p105 through an ATP-dependent pathway. Nature, 1991, 354, 395-398.	13.7	320
64	Astrocytes in Neurodegenerative Disease: Table 1 Cold Spring Harbor Perspectives in Biology, 2015, 7, a020628.	2.3	312
65	Multiple Functions of the IKK-Related Kinase IKKÂ in Interferon-Mediated Antiviral Immunity. Science, 2007, 315, 1274-1278.	6.0	309
66	Mutant induced pluripotent stem cell lines recapitulate aspects of TDP-43 proteinopathies and reveal cell-specific vulnerability. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5803-5808.	3.3	308
67	Astrocyte pathology and the absence of non-cell autonomy in an induced pluripotent stem cell model of TDP-43 proteinopathy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4697-4702.	3.3	301
68	Caspase-mediated processing of the Drosophila NF-ÂB factor Relish. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5991-5996.	3.3	294
69	Correct developmental expression of a cloned alcohol dehydrogenase gene transduced into the drosophila germ line. Cell, 1983, 34, 59-73.	13.5	290
70	Reversal of intrinsic DNA bends in the IFNÎ ² gene enhancer by transcription factors and the architectural protein HMG I(Y). Cell, 1995, 83, 1101-1111.	13.5	289
71	The structure of a human α-globin pseudogene and its relationship to α-globin gene duplication. Cell, 1980, 21, 537-544.	13.5	279
72	Early and late periodic patterns of even skipped expression are controlled by distinct regulatory elements that respond to different spatial cues. Cell, 1989, 57, 413-422.	13.5	278

#	Article	IF	CITATIONS
73	A Drosophila Ikappa B kinase complex required for Relish cleavage and antibacterial immunity. Genes and Development, 2000, 14, 2461-2471.	2.7	278
74	Promoter Choice Determines Splice Site Selection in Protocadherin α and γ Pre-mRNA Splicing. Molecular Cell, 2002, 10, 21-33.	4.5	271
75	Multilevel Regulation of Gene Expression by MicroRNAs. Science, 2008, 319, 1789-1790.	6.0	267
76	X-linked recessive TLR7 deficiency in \sim 1% of men under 60 years old with life-threatening COVID-19. Science Immunology, 2021, 6, .	5.6	267
77	Characterisation of deletions which affect the expression of fetal globin genes in man. Nature, 1979, 279, 598-603.	13.7	265
78	Sex-specific splicing and polyadenylation of dsx pre-mRNA requires a sequence that binds specifically to tra-2 protein in vitro. Cell, 1991, 65, 579-586.	13.5	258
79	Modification of the melting properties of duplex DNA by attachment of a GC-rich DNA sequence as determined by denaturing gradient gel electrophoresis. Nucleic Acids Research, 1985, 13, 3111-3129.	6.5	252
80	Virus Infection Leads to Localized Hyperacetylation of Histones H3 and H4 at the IFN-Î ² Promoter. Molecular Cell, 1999, 3, 125-129.	4.5	249
81	Rapid reprogramming of globin gene expression in transient heterokaryons. Cell, 1986, 46, 591-602.	13.5	242
82	A role for the Drosophila neurogenic genes in mesoderm differentiation. Cell, 1991, 67, 311-323.	13.5	237
83	Accelerated High-Yield Generation of Limb-Innervating Motor Neurons from Human Stem Cells. Journal of Neuroscience, 2013, 33, 574-586.	1.7	230
84	An HMG-like protein that can switch a transcriptional activator to a repressor. Nature, 1994, 371, 175-179.	13.7	229
85	Comparative DNA Sequence Analysis of Mouse and Human Protocadherin Gene Clusters. Genome Research, 2001, 11, 389-404.	2.4	224
86	Immune Activation of NF-κB and JNK Requires Drosophila TAK1. Journal of Biological Chemistry, 2003, 278, 48928-48934.	1.6	221
87	Recognition sequences of repressor and polymerase in the operators of bacteriophage lambda. Cell, 1975, 5, 109-113.	13.5	218
88	CTCF/cohesin-mediated DNA looping is required for protocadherin \hat{I}_{\pm} promoter choice. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21081-21086.	3.3	218
89	Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature, 2022, 603, 587-598.	13.7	216
90	Single-cell topological RNA-seq analysis reveals insights into cellular differentiation and development. Nature Biotechnology, 2017, 35, 551-560.	9.4	215

#	Article	IF	CITATIONS
91	Full length and discrete partial reverse transcripts of globin and chorion mRNAs. Cell, 1975, 4, 367-378.	13.5	213
92	Detection of factors that interact with the human β-interferon regulatory region in vivo by DNAase I footprinting. Cell, 1986, 45, 611-618.	13.5	211
93	Selection and Characterization of Pre-mRNA Splicing Enhancers: Identification of Novel SR Protein-Specific Enhancer Sequences. Molecular and Cellular Biology, 1999, 19, 1705-1719.	1.1	207
94	The structure of Ï^ DNA. Journal of Molecular Biology, 1974, 84, 37-64.	2.0	204
95	The regulated expression of β-globin genes introduced into mouse erythroleukemia cells. Cell, 1983, 32, 483-493.	13.5	203
96	The role of specific protein-RNA and protein-protein interactions in positive and negative control of pre-mRNA splicing by Transformer 2. Cell, 1994, 76, 735-746.	13.5	191
97	Single-Cell Identity Generated by Combinatorial Homophilic Interactions between α, β, and γ Protocadherins. Cell, 2014, 158, 1045-1059.	13.5	190
98	Arginine/Serine-Rich Domains of SR Proteins Can Function as Activators of Pre-mRNA Splicing. Molecular Cell, 1998, 1, 765-771.	4.5	179
99	The structure and transcription of four linked rabbit Î ² -like globin genes. Cell, 1979, 18, 1285-1297.	13.5	178
100	Crystal Structure and Mechanism of Activation of TANK-Binding Kinase 1. Cell Reports, 2013, 3, 734-746.	2.9	177
101	Activation of innate and humoral immunity in the peripheral nervous system of ALS transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20960-20965.	3.3	175
102	Multiple Distinct Splicing Enhancers in the Protein-Coding Sequences of a Constitutively Spliced Pre-mRNA. Molecular and Cellular Biology, 1999, 19, 261-273.	1.1	173
103	Clustered protocadherins. Development (Cambridge), 2013, 140, 3297-3302.	1.2	161
104	Role of transcriptional interference in the Drosophila melanogaster Adh promoter switch. Nature, 1989, 337, 279-282.	13.7	160
105	Crystal structure of ATF-2/c-Jun and IRF-3 bound to the interferon-β enhancer. EMBO Journal, 2004, 23, 4384-4393.	3.5	156
106	Distinct roles for motor neuron autophagy early and late in the SOD1 ^{G93A} mouse model of ALS. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8294-E8303.	3.3	154
107	Stimulus-Specific Assembly of Enhancer Complexes on the Tumor Necrosis Factor Alpha Gene Promoter. Molecular and Cellular Biology, 2000, 20, 2239-2247.	1.1	151
108	Interferon Regulatory Factor 3 Is Regulated by a Dual Phosphorylation-dependent Switch. Journal of Biological Chemistry, 2007, 282, 22816-22822.	1.6	149

#	Article	IF	CITATIONS
109	Antisense lncRNA Transcription Mediates DNA Demethylation to Drive Stochastic Protocadherin $\hat{I}\pm$ Promoter Choice. Cell, 2019, 177, 639-653.e15.	13.5	147
110	Sequence of a represser-binding site in the DNA of bacteriophage λ. Nature, 1974, 250, 394-397.	13.7	145
111	Prevalent presence of periodic actin–spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6029-6034.	3.3	145
112	The organization of repetitive sequences in a cluster of rabbit Î ² -like globin genes. Cell, 1980, 19, 379-391.	13.5	143
113	Molecular Logic of Neuronal Self-Recognition through Protocadherin Domain Interactions. Cell, 2015, 163, 629-642.	13.5	141
114	The linkage arrangement of four rabbit \hat{I}^2 -like globin genes. Cell, 1979, 18, 1273-1283.	13.5	140
115	Common themes in the function of transcription and splicing enhancers. Current Opinion in Cell Biology, 1997, 9, 350-357.	2.6	140
116	Editing of glutamate receptor subunit B pre-mRNA in vitro by site-specific deamination of adenosine. Nature, 1995, 374, 77-81.	13.7	133
117	Intricate interplay between astrocytes and motor neurons in ALS. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E756-65.	3.3	132
118	Role of CCCTC binding factor (CTCF) and cohesin in the generation of single-cell diversity of Protocadherin-α gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9125-9130.	3.3	131
119	The nucleotide sequence of a rabbit \hat{l}^2 -globin pseudogene. Cell, 1980, 21, 545-553.	13.5	129
120	Action of leucine zippers. Nature, 1989, 341, 24-25.	13.7	126
121	Assembly of a Functional Beta Interferon Enhanceosome Is Dependent on ATF-2–c-jun Heterodimer Orientation. Molecular and Cellular Biology, 2000, 20, 4814-4825.	1.1	126
122	Purification and visualization of native spliceosomes. Cell, 1988, 53, 949-961.	13.5	125
123	Multicluster Pcdh diversity is required for mouse olfactory neural circuit assembly. Science, 2017, 356, 411-414.	6.0	124
124	The role of U2AF35 and U2AF65 in enhancer-dependent splicing. Rna, 2001, 7, 806-818.	1.6	121
125	Pcdhαc2 is required for axonal tiling and assembly of serotonergic circuitries in mice. Science, 2017, 356, 406-411.	6.0	121
126	The Role of Ubiquitination in Drosophila Innate Immunity. Journal of Biological Chemistry, 2005, 280, 34048-34055.	1.6	116

#	Article	IF	CITATIONS
127	Serine/arginine-rich protein-dependent suppression of exon skipping by exonic splicing enhancers. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5002-5007.	3.3	109
128	Stochastic Expression of the Interferon- $\hat{1}^2$ Gene. PLoS Biology, 2012, 10, e1001249.	2.6	107
129	[38] Fractionation of low molecular weight DNA or RNA in polyacrylamide gels containing 98% formamide or 7 M urea. Methods in Enzymology, 1980, 65, 299-305.	0.4	106
130	Identification of long-range regulatory elements in the protocadherin-Â gene cluster. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19719-19724.	3.3	106
131	Structure and transcription of theDrosophila mullerialcohol dehydrogenase genes. Nucleic Acids Research, 1985, 13, 6899-6917.	6.5	105
132	lκB kinase ε (IKKε) regulates the balance between type I and type II interferon responses. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 21170-21175.	3.3	105
133	Drosophila Adh: A promoter element expands the tissue specificity of an enhancer. Cell, 1988, 53, 451-461.	13.5	100
134	A Small Domain of CBP/p300 Binds Diverse Proteins. Molecular Cell, 2001, 8, 581-590.	4.5	100
135	Functional Significance of Isoform Diversification in the Protocadherin Gamma Gene Cluster. Neuron, 2012, 75, 402-409.	3.8	100
136	SARS-CoV-2–related MIS-C: A key to the viral and genetic causes of Kawasaki disease?. Journal of Experimental Medicine, 2021, 218, .	4.2	100
137	Connecting Mitochondria and Innate Immunity. Cell, 2005, 122, 645-647.	13.5	96
138	hnRNP U protein is required for normal pre-mRNA splicing and postnatal heart development and function. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3020-9.	3.3	90
139	Regulatory elements required for the activation and repression of the protocadherin-α gene cluster. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17195-17200.	3.3	87
140	Structural Basis of Diverse Homophilic Recognition by Clustered α- and β-Protocadherins. Neuron, 2016, 90, 709-723.	3.8	87
141	Visualization of clustered protocadherin neuronal self-recognition complexes. Nature, 2019, 569, 280-283.	13.7	86
142	Writing, Reading, and Translating the Clustered Protocadherin Cell Surface Recognition Code for Neural Circuit Assembly. Annual Review of Cell and Developmental Biology, 2018, 34, 471-493.	4.0	84
143	Spliced leader RNAs from lower eukaryotes are trans- spliced in mammalian cells. Nature, 1992, 360, 692-695.	13.7	83
144	NF-κB p105 Processing via the Ubiquitin-Proteasome Pathway. Journal of Biological Chemistry, 1998, 273, 1409-1419.	1.6	83

#	Article	IF	CITATIONS
145	Promoters are in the operators in phage lambda. Nature, 1974, 249, 221-223.	13.7	74
146	The Function of Multisite Splicing Enhancers. Molecular Cell, 1998, 1, 449-455.	4.5	74
147	Endocytic pathway is required for <i>Drosophila</i> Toll innate immune signaling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8322-8327.	3.3	74
148	The Loss of TBK1 Kinase Activity in Motor Neurons or in All Cell Types Differentially Impacts ALS Disease Progression in SOD1 Mice. Neuron, 2020, 106, 789-805.e5.	3.8	69
149	Structure of the λ Operators. Nature, 1973, 246, 133-136.	13.7	60
150	Protocadherin <i>cis</i> -dimer architecture and recognition unit diversity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9829-E9837.	3.3	55
151	ALS- and FTD-associated missense mutations in TBK1 differentially disrupt mitophagy. Proceedings of the United States of America, 2021, 118, .	3.3	55
152	The generation of a protocadherin cell-surface recognition code for neural circuit assembly. Current Opinion in Neurobiology, 2019, 59, 213-220.	2.0	54
153	\hat{I}^3 -Protocadherin structural diversity and functional implications. ELife, 2016, 5, .	2.8	54
154	Phosphorylation of protocadherin proteins by the receptor tyrosine kinase Ret. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13894-13899.	3.3	53
155	Cardiac glycosides are potent inhibitors of interferon-β gene expression. Nature Chemical Biology, 2011, 7, 25-33.	3.9	48
156	SR proteins are â€~locators' of the RNA splicing machinery. Current Biology, 1999, 9, R6-R7.	1.8	44
157	Molecular and Functional Interaction between Protocadherin-Î ³ C5 and GABA _A Receptors. Journal of Neuroscience, 2012, 32, 11780-11797.	1.7	44
158	Histone and DNA Modifications as Regulators of Neuronal Development and Function. Cold Spring Harbor Perspectives in Biology, 2016, 8, a024208.	2.3	42
159	Delay in Synthesis of the 3′ Splice Site Promotes trans-Splicing of the Preceding 5′ Splice Site. Molecular Cell, 2005, 18, 245-251.	4.5	39
160	Allele-Specific Knockdown of ALS-Associated Mutant TDP-43 in Neural Stem Cells Derived from Induced Pluripotent Stem Cells. PLoS ONE, 2014, 9, e91269.	1.1	39
161	Effects of ALS-associated TANK binding kinase 1 mutations on protein–protein interactions and kinase activity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24517-24526.	3.3	37
162	Proteolytic processing of protocadherin proteins requires endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17774-17779.	3.3	36

#	Article	IF	CITATIONS
163	Structural origins of clustered protocadherin-mediated neuronal barcoding. Seminars in Cell and Developmental Biology, 2017, 69, 140-150.	2.3	36
164	A dimer-specific function of the transcription factor NFATp. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19637-19642.	3.3	35
165	Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs. Science Immunology, 2023, 8, .	5.6	35
166	Clustered gamma-protocadherins regulate cortical interneuron programmed cell death. ELife, 2020, 9,	2.8	33
167	Selection of sequences recognized by a DNA binding protein using a preparative Southwestern blot. Nucleic Acids Research, 1991, 19, 4675-4680.	6.5	31
168	Negative Regulation of Interferon-Î ² Gene Expression during Acute and Persistent Virus Infections. PLoS ONE, 2011, 6, e20681.	1.1	30
169	The role of clustered protocadherins in neurodevelopment and neuropsychiatric diseases. Current Opinion in Genetics and Development, 2020, 65, 144-150.	1.5	28
170	Solid phase chemistry to covalently and reversibly capture thiolated RNA. Nucleic Acids Research, 2018, 46, 6996-7005.	6.5	21
171	A new approach for rare variation collapsing on functional protein domains implicates specific genic regions in ALS. Genome Research, 2019, 29, 809-818.	2.4	21
172	Novel ultra-rare exonic variants identified in a founder population implicate cadherins in schizophrenia. Neuron, 2021, 109, 1465-1478.e4.	3.8	21
173	Respiratory viral infections in otherwise healthy humans with inherited IRF7 deficiency. Journal of Experimental Medicine, 2022, 219, .	4.2	21
174	A DNA Operator-Repressor System. Scientific American, 1976, 234, 64-76.	1.0	20
175	Cell type-specific CLIP reveals that NOVA regulates cytoskeleton interactions in motoneurons. Genome Biology, 2018, 19, 117.	3.8	19
176	Gene modification: Targeting in mammalian cells. Nature, 1985, 317, 205-206.	13.7	15
177	Parallel Pathways of Virus Recognition. Immunity, 2006, 24, 510-512.	6.6	12
178	In vitro assembly of enhancer complexes. Methods in Enzymology, 1996, 274, 162-173.	0.4	11
179	Beta-Thalassemia: Analysis of Mrna Precursors of a Mutant Human Globin Gene with Defective Splicing Using Peripheral Blood Nucleated Red Blood Cells. Hemoglobin, 1986, 10, 573-586.	0.4	7

A Prion-like Trigger of Antiviral Signaling. Cell, 2011, 146, 348-350.

13.5 7

#	Article	IF	CITATIONS
181	Ultra-Rare Exonic Variants Identified in a Founder Population Implicate Cadherins and Protocadherins in Schizophrenia. Biological Psychiatry, 2021, 89, S83.	0.7	2
182	On the road from classical to modern molecular biology. Nature Medicine, 2012, 18, 1499-1502.	15.2	1
183	Unpicking neurodegeneration in a dish with human pluripotent stem cells. Cell Cycle, 2013, 12, 2339-2340.	1.3	1
184	Harold Weintraub (1945–1995). Cell, 1995, 81, 317-318.	13.5	0