List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3699230/publications.pdf

Version: 2024-02-01

KATIA DINKED

#	Article	IF	CITATIONS
1	Breast MRI: EUSOBI recommendations for women's information. European Radiology, 2015, 25, 3669-3678.	4.5	330
2	Diffusion-weighted MR for Differentiation of Breast Lesions at 3.0 T: How Does Selection of Diffusion Protocols Affect Diagnosis?. Radiology, 2009, 253, 341-351.	7.3	262
3	Diffusion-weighted imaging of the breast—a consensus and mission statement from the EUSOBI International Breast Diffusion-Weighted Imaging working group. European Radiology, 2020, 30, 1436-1450.	4.5	255
4	Precision Medicine and Radiogenomics in Breast Cancer: New Approaches toward Diagnosis and Treatment. Radiology, 2018, 287, 732-747.	7.3	203
5	Impact of Machine Learning With Multiparametric Magnetic Resonance Imaging of the Breast for Early Prediction of Response to Neoadjuvant Chemotherapy and Survival Outcomes in Breast Cancer Patients. Investigative Radiology, 2019, 54, 110-117.	6.2	185
6	Readout-segmented Echo-planar Imaging Improves the Diagnostic Performance of Diffusion-weighted MR Breast Examinations at 3.0 T. Radiology, 2012, 263, 64-76.	7.3	180
7	Second International Consensus Conference on lesions of uncertain malignant potential in the breast (B3 lesions). Breast Cancer Research and Treatment, 2019, 174, 279-296.	2.5	179
8	Combining molecular and imaging metrics in cancer: radiogenomics. Insights Into Imaging, 2020, 11, 1.	3.4	150
9	Background, current role, and potential applications of radiogenomics. Journal of Magnetic Resonance Imaging, 2018, 47, 604-620.	3.4	137
10	Breast cancer screening in women with extremely dense breasts recommendations of the European Society of Breast Imaging (EUSOBI). European Radiology, 2022, 32, 4036-4045.	4.5	137
11	Position paper on screening for breast cancer by the European Society of Breast Imaging (EUSOBI) and 30 national breast radiology bodies from Austria, Belgium, Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Israel, Lithuania, Moldova, The Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia,	4.5	136
12	Matrix-based autologous chondrocyte implantation for cartilage repair: noninvasive monitoring by high-resolution magnetic resonance imaging. Magnetic Resonance Imaging, 2005, 23, 779-787.	1.8	131
13	Diffusion-Weighted Imaging With Apparent Diffusion Coefficient Mapping for Breast Cancer Detection as a Stand-Alone Parameter. Investigative Radiology, 2018, 53, 587-595.	6.2	130
14	Evaluating tumor response with FDG PET: updates on PERCIST, comparison with EORTC criteria and clues to future developments. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 55-66.	6.4	117
15	The potential of multiparametric MRI of the breast. British Journal of Radiology, 2017, 90, 20160715.	2.2	110
16	Improved Diagnostic Accuracy With Multiparametric Magnetic Resonance Imaging of the Breast Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging, Diffusion-Weighted Imaging, and 3-Dimensional Proton Magnetic Resonance Spectroscopic Imaging. Investigative Radiology, 2014, 49, 421-430.	6.2	107
17	Abbreviated MRI of the Breast: Does It Provide Value?. Journal of Magnetic Resonance Imaging, 2019, 49, e85-e100.	3.4	107
18	Combined contrast-enhanced magnetic resonance and diffusion-weighted imaging reading adapted to the "Breast Imaging Reporting and Data System―for multiparametric 3-T imaging of breast lesions. European Radiology, 2013, 23, 1791-1802.	4.5	106

#	Article	IF	CITATIONS
19	Application of three-tesla magnetic resonance imaging for diagnosis and surgery of sellar lesions. Journal of Neurosurgery, 2004, 100, 278-286.	1.6	105
20	Multiparametric MRI of the breast: A review. Journal of Magnetic Resonance Imaging, 2018, 47, 301-315.	3.4	105
21	A Combined High Temporal and High Spatial Resolution 3 Tesla MR Imaging Protocol for the Assessment of Breast Lesions. Investigative Radiology, 2009, 44, 553-558.	6.2	104
22	Activity of T-DM1 in Her2-positive breast cancer brain metastases. Clinical and Experimental Metastasis, 2015, 32, 729-737.	3.3	103
23	Detection of degenerative cartilage disease: comparison of high-resolution morphological MR and quantitative T2 mapping at 3.0 Tesla. Osteoarthritis and Cartilage, 2010, 18, 1211-1217.	1.3	100
24	Evaluation of Diffusion-Weighted MRI for Pretherapeutic Assessment and Staging of Lymphoma: Results of a Prospective Study in 140 Patients. Clinical Cancer Research, 2014, 20, 2984-2993.	7.0	100
25	Comparison of screening CEDM and MRI for women at increased risk for breast cancer: A pilot study. European Journal of Radiology, 2017, 97, 37-43.	2.6	98
26	Lymph Node Imaging in Patients with Primary Breast Cancer: Concurrent Diagnostic Tools. Oncologist, 2020, 25, e231-e242.	3.7	96
27	Image-guided breast biopsy and localisation: recommendations for information to women and referring physicians by the European Society of Breast Imaging. Insights Into Imaging, 2020, 11, 12.	3.4	96
28	Breast ultrasound: recommendations for information to women and referring physicians by the European Society of Breast Imaging. Insights Into Imaging, 2018, 9, 449-461.	3.4	95
29	Diffusion-weighted MRI for Unenhanced Breast Cancer Screening. Radiology, 2019, 293, 504-520.	7.3	92
30	Differentiating normal hyaline cartilage from post-surgical repair tissue using fast gradient echo imaging in delayed gadolinium-enhanced MRI (dGEMRIC) at 3 Tesla. European Radiology, 2008, 18, 1251-1259.	4.5	90
31	Head-to-head comparison of PI-RADS v2 and PI-RADS v1. European Journal of Radiology, 2016, 85, 1125-1131.	2.6	88
32	Matrix-based autologous chondrocyte implantation for cartilage repair with Hyalograft®C: Two-year follow-up by magnetic resonance imaging. European Journal of Radiology, 2006, 57, 9-15.	2.6	87
33	MRI-only lesions: application of diffusion-weighted imaging obviates unnecessary MR-guided breast biopsies. European Radiology, 2014, 24, 1204-1210.	4.5	87
34	Quantitative Apparent Diffusion Coefficient as a Noninvasive Imaging Biomarker for the Differentiation of Invasive Breast Cancer and Ductal Carcinoma In Situ. Investigative Radiology, 2015, 50, 95-100.	6.2	87
35	A survey by the European Society of Breast Imaging on the utilisation of breast MRI in clinical practice. European Radiology, 2018, 28, 1909-1918.	4.5	85
36	Clinical role of breast MRI now and going forward. Clinical Radiology, 2018, 73, 700-714.	1.1	83

#	Article	IF	CITATIONS
37	Improved Differentiation of Benign and Malignant Breast Tumors with Multiparametric 18Fluorodeoxyglucose Positron Emission Tomography Magnetic Resonance Imaging: A Feasibility Study. Clinical Cancer Research, 2014, 20, 3540-3549.	7.0	82
38	Diffusion-weighted imaging of breast lesions: Region-of-interest placement and different ADC parameters influence apparent diffusion coefficient values. European Radiology, 2017, 27, 1883-1892.	4.5	82
39	Potential of Noncontrast Magnetic Resonance Imaging With Diffusion-Weighted Imaging in Characterization of Breast Lesions. Investigative Radiology, 2018, 53, 229-235.	6.2	81
40	Radiomic signatures with contrast-enhanced magnetic resonance imaging for the assessment of breast cancer receptor status and molecular subtypes: initial results. Breast Cancer Research, 2019, 21, 106.	5.0	81
41	Textureâ€based classification of focal liver lesions on MRI at 3.0 Tesla: A feasibility study in cysts and hemangiomas. Journal of Magnetic Resonance Imaging, 2010, 32, 352-359.	3.4	80
42	The value of high-field MRI (3T) in the assessment of sellar lesions. European Journal of Radiology, 2005, 54, 327-334.	2.6	79
43	Combining the strengths of radiologists and AI for breast cancer screening: a retrospective analysis. The Lancet Digital Health, 2022, 4, e507-e519.	12.3	79
44	Breast cancer detection and tumor characteristics in BRCA1 and BRCA2 mutation carriers. Breast Cancer Research and Treatment, 2017, 163, 565-571.	2.5	77
45	Metabolic changes in the normal ageing brain: Consistent findings from short and long echo time proton spectroscopy. European Journal of Radiology, 2008, 68, 320-327.	2.6	76
46	Effect of Contrast Dose and Field Strength in the Magnetic Resonance Detection of Brain Metastases. Investigative Radiology, 2003, 38, 415-422.	6.2	75
47	The optimal use of contrast agents at high field MRI. European Radiology, 2006, 16, 1280-1287.	4.5	75
48	Comparison of FDG-PET/CT and contrast-enhanced CT for monitoring therapy response in patients with metastatic breast cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 1428-1437.	6.4	74
49	Diffusionâ€weighted imaging (DWI) with apparent diffusion coefficient (ADC) mapping as a quantitative imaging biomarker for prediction of immunohistochemical receptor status, proliferation rate, and molecular subtypes of breast cancer. Journal of Magnetic Resonance Imaging, 2019, 50, 836-846.	3.4	72
50	Quantitative Sodium MR Imaging at 7 T: Initial Results and Comparison with Diffusion-weighted Imaging in Patients with Breast Tumors. Radiology, 2016, 280, 39-48.	7.3	69
51	MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer. EBioMedicine, 2020, 61, 103042.	6.1	68
52	Dedicated multi-detector CT of the esophagus: spectrum of diseases. Abdominal Imaging, 2009, 34, 3-18.	2.0	66
53	Molecular imaging of cancer: MR spectroscopy and beyond. European Journal of Radiology, 2012, 81, 566-577.	2.6	65
54	High-Resolution Contrast-Enhanced, Susceptibility-Weighted MR Imaging at 3T in Patients with Brain Tumors: Correlation with Positron-Emission Tomography and Histopathologic Findings. American Journal of Neuroradiology, 2007, 28, 1280-1286.	2.4	63

#	Article	IF	CITATIONS
55	Diffusion-weighted MR imaging with background body signal suppression (DWIBS) for the diagnosis of malignant and benign breast lesions. European Radiology, 2009, 19, 2349-2356.	4.5	63
56	A machine learning model that classifies breast cancer pathologic complete response on MRI post-neoadjuvant chemotherapy. Breast Cancer Research, 2020, 22, 57.	5.0	63
57	High resolution MRI of the breast at 3ÂT: which BI-RADS® descriptors are most strongly associated with the diagnosis of breast cancer?. European Radiology, 2012, 22, 322-330.	4.5	62
58	A simple scoring system for breast MRI interpretation: does it compensate for reader experience?. European Radiology, 2016, 26, 2529-2537.	4.5	62
59	Three-dimensional Proton MR Spectroscopic Imaging at 3 T for the Differentiation of Benign and Malignant Breast Lesions. Radiology, 2011, 261, 752-761.	7.3	61
60	A simple classification system (the Tree flowchart) for breast MRI can reduce the number of unnecessary biopsies in MRI-only lesions. European Radiology, 2017, 27, 3799-3809.	4.5	59
61	Investigating the prediction value of multiparametric magnetic resonance imaging at 3ÂT in response to neoadjuvant chemotherapy in breast cancer. European Radiology, 2017, 27, 1901-1911.	4.5	59
62	The prevalence of lumbar facet joint edema in patients with low back pain. Skeletal Radiology, 2007, 36, 755-760.	2.0	58
63	Bilateral Diffusion-weighted MR Imaging of Breast Tumors with Submillimeter Resolution Using Readout-segmented Echo-planar Imaging at 7 T. Radiology, 2015, 274, 74-84.	7.3	58
64	Radiomic Signatures Derived from Diffusion-Weighted Imaging for the Assessment of Breast Cancer Receptor Status and Molecular Subtypes. Molecular Imaging and Biology, 2020, 22, 453-461.	2.6	57
65	Non-Invasive Assessment of Breast Cancer Molecular Subtypes with Multiparametric Magnetic Resonance Imaging Radiomics. Journal of Clinical Medicine, 2020, 9, 1853.	2.4	57
66	18F-FDG-PET/CT for systemic staging of newly diagnosed triple-negative breast cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 1937-1944.	6.4	53
67	Contrast-Enhanced Mammography and Radiomics Analysis for Noninvasive Breast Cancer Characterization: Initial Results. Molecular Imaging and Biology, 2020, 22, 780-787.	2.6	53
68	Machine learning with multiparametric magnetic resonance imaging of the breast for early prediction of response to neoadjuvant chemotherapy. Breast, 2020, 49, 115-122.	2.2	52
69	Transmission of vector vortex beams in dispersive media. Advanced Photonics, 2020, 2, 1.	11.8	52
70	Axillary lymphadenopathy at the time of COVID-19 vaccination: ten recommendations from the European Society of Breast Imaging (EUSOBI). Insights Into Imaging, 2021, 12, 119.	3.4	51
71	Diffusion-weighted Imaging Allows for Downgrading MR BI-RADS 4 Lesions in Contrast-enhanced MRI of the Breast to Avoid Unnecessary Biopsy. Clinical Cancer Research, 2021, 27, 1941-1948.	7.0	51
72	MR Contrast Agent at High-Field MRI (3 Tesla). Topics in Magnetic Resonance Imaging, 2003, 14, 365-375.	1.2	50

#	Article	IF	CITATIONS
73	Clinical application of bilateral high temporal and spatial resolution dynamic contrast-enhanced magnetic resonance imaging of the breast at 7ÂT. European Radiology, 2014, 24, 913-920.	4.5	49
74	Multiparametric MRI model with dynamic contrastâ€enhanced and diffusionâ€weighted imaging enables breast cancer diagnosis with high accuracy. Journal of Magnetic Resonance Imaging, 2019, 49, 864-874.	3.4	49
75	Breast conservation and axillary management after primary systemic therapy in patients with early-stage breast cancer: the Lucerne toolbox. Lancet Oncology, The, 2021, 22, e18-e28.	10.7	49
76	T1(Gd) Gives Comparable Information as Delta T1 Relaxation Rate in dGEMRIC Evaluation of Cartilage Repair Tissue. Investigative Radiology, 2009, 44, 598-602.	6.2	48
77	Proton Magnetic Resonance Spectroscopic Imaging in the Border Zone of Gliomas. Investigative Radiology, 2007, 42, 218-223.	6.2	46
78	Diffusionâ€weighted MRI of breast lesions: a prospective clinical investigation of the quantitative imaging biomarker characteristics of reproducibility, repeatability, and diagnostic accuracy. NMR in Biomedicine, 2016, 29, 1445-1453.	2.8	46
79	Quantitative Multiparametric Breast Ultrasound. Investigative Radiology, 2019, 54, 257-264.	6.2	46
80	Multiparametric [18F]Fluorodeoxyglucose/ [18F]Fluoromisonidazole Positron Emission Tomography/ Magnetic Resonance Imaging of Locally Advanced Cervical Cancer for the Non-Invasive Detection of Tumor Heterogeneity: A Pilot Study. PLoS ONE, 2016, 11, e0155333.	2.5	45
81	Multiparametric MR Imaging with High-Resolution Dynamic Contrast-enhanced and Diffusion-weighted Imaging at 7 T Improves the Assessment of Breast Tumors: A Feasibility Study. Radiology, 2015, 276, 360-370.	7.3	44
82	Diffusion-Weighted Magnetic Resonance Imaging of Patients with Breast Cancer Following Neoadjuvant Chemotherapy Provides Early Prediction of Pathological Response – A Prospective Study. Scientific Reports, 2019, 9, 16372.	3.3	44
83	Limited role of DWI with apparent diffusion coefficient mapping in breast lesions presenting as non-mass enhancement on dynamic contrast-enhanced MRI. Breast Cancer Research, 2019, 21, 136.	5.0	44
84	Contrast-Enhanced, High-Resolution, Susceptibility-Weighted Magnetic Resonance Imaging of the Brain. Investigative Radiology, 2006, 41, 249-255.	6.2	42
85	Delayed gadoliniumâ€enhanced MRI of cartilage in the ankle at 3 T: Feasibility and preliminary results after matrixâ€associated autologous chondrocyte implantation. Journal of Magnetic Resonance Imaging, 2010, 31, 732-739.	3.4	41
86	Improved Preoperative Evaluation of Cerebral Cavernomas by High-Field, High-Resolution Susceptibility-Weighted Magnetic Resonance Imaging at 3 Tesla. Investigative Radiology, 2007, 42, 346-351.	6.2	39
87	MR-guided vacuum-assisted breast biopsy of MRI-only lesions: a single center experience. European Radiology, 2016, 26, 3908-3916.	4.5	39
88	Proton MR spectroscopy in the breast: Technical innovations and clinical applications. Journal of Magnetic Resonance Imaging, 2019, 50, 1033-1046.	3.4	39
89	Fat saturation in dynamic breast MRI at 3ÂTesla: is the Dixon technique superior to spectral fat saturation? A visual grading characteristics study. European Radiology, 2014, 24, 2213-2219.	4.5	38
90	Diagnostic performance of digital breast tomosynthesis with a wide scan angle compared to full-field digital mammography for the detection and characterization of microcalcifications. European Journal of Radiology, 2016, 85, 2161-2168.	2.6	38

#	Article	IF	CITATIONS
91	Application of BI-RADS Descriptors in Contrast-Enhanced Dual-Energy Mammography: Comparison with MRI. Breast Care, 2017, 12, 212-216.	1.4	37
92	High-risk lesions of the breast: concurrent diagnostic tools and management recommendations. Insights Into Imaging, 2021, 12, 63.	3.4	37
93	Are cerebral cavernomas truly nonenhancing lesions and thereby distinguishable from arteriovenous malformations?. Magnetic Resonance Imaging, 2006, 24, 631-637.	1.8	35
94	Al-enhanced breast imaging: Where are we and where are we heading?. European Journal of Radiology, 2021, 142, 109882.	2.6	35
95	Quantitative in vivo proton MR spectroscopic assessment of lipid metabolism: Value for breast cancer diagnosis and prognosis. Journal of Magnetic Resonance Imaging, 2019, 50, 239-249.	3.4	34
96	Multiparametric Integrated 18F-FDG PET/MRI-Based Radiomics for Breast Cancer Phenotyping and Tumor Decoding. Cancers, 2021, 13, 2928.	3.7	34
97	High-field, high-resolution, susceptibility-weighted magnetic resonance imaging: improved image quality by addition of contrast agent and higher field strength in patients with brain tumors. Neuroradiology, 2008, 50, 9-16.	2.2	33
98	A rapid volume of interest-based approach of radiomics analysis of breast MRI for tumor decoding and phenotyping of breast cancer. PLoS ONE, 2020, 15, e0234871.	2.5	33
99	Rate of Malignancy in MRI-Detected Probably Benign (BI-RADS 3) Lesions. American Journal of Roentgenology, 2014, 202, 684-689.	2.2	32
100	Breast Tumor Characterization Using [18F]FDG-PET/CT Imaging Combined with Data Preprocessing and Radiomics. Cancers, 2021, 13, 1249.	3.7	32
101	Improved characterization of sub-centimeter enhancing breast masses on MRI with radiomics and machine learning in BRCA mutation carriers. European Radiology, 2020, 30, 6721-6731.	4.5	31
102	Introduction of an Automated User–Independent Quantitative Volumetric Magnetic Resonance Imaging Breast Density Measurement System Using the Dixon Sequence. Investigative Radiology, 2015, 50, 73-80.	6.2	30
103	Magnetic resonance imaging before breast cancer surgery: results of an observational multicenter international prospective analysisÂ(MIPA). European Radiology, 2022, 32, 1611-1623.	4.5	30
104	The frequency of missed breast cancers in women participating in a high-risk MRI screening program. Breast Cancer Research and Treatment, 2018, 169, 323-331.	2.5	29
105	Radiomics for Tumor Characterization in Breast Cancer Patients: A Feasibility Study Comparing Contrast-Enhanced Mammography and Magnetic Resonance Imaging. Diagnostics, 2020, 10, 492.	2.6	29
106	Clinical application of Acoustic Radiation Force Impulse Imaging with Virtual Touch IQ in breast ultrasound: diagnostic performance and reproducibility of a new technique. Acta Radiologica, 2017, 58, 140-147.	1.1	28
107	Imaging Phenotypes in Women at High Risk for Breast Cancer on Mammography, Ultrasound, and Magnetic Resonance Imaging Using the Fifth Edition of the Breast Imaging Reporting and Data System. European Journal of Radiology, 2018, 106, 150-159.	2.6	28
108	Diagnostic value of diffusion-weighted imaging with synthetic b-values in breast tumors: comparison with dynamic contrast-enhanced and multiparametric MRI. European Radiology, 2021, 31, 356-367.	4.5	28

#	Article	IF	CITATIONS
109	Dynamic Contrast-Enhanced Magnetic Resonance Imaging of Breast Tumors at 3 and 7 T. Investigative Radiology, 2014, 49, 354-362.	6.2	27
110	Diffusionâ€Weighted MRI of Breast Cancer: Improved Lesion Visibility and Image Quality Using Synthetic bâ€Values. Journal of Magnetic Resonance Imaging, 2019, 50, 1754-1761.	3.4	27
111	Proton magnetic resonance spectroscopy in pituitary macroadenomas: preliminary results. Journal of Neurosurgery, 2008, 109, 306-312.	1.6	26
112	The Impact That Number of Analyzed Metastatic Breast Cancer Lesions Has on Response Assessment by ¹⁸ F-FDG PET/CT Using PERCIST. Journal of Nuclear Medicine, 2016, 57, 1102-1104.	5.0	26
113	Al â€Enhanced Diagnosis of Challenging Lesions in Breast MRI : A Methodology and Application Primer. Journal of Magnetic Resonance Imaging, 2020, 54, 686-702.	3.4	26
114	Feasibility of dominant intraprostatic lesion boosting using advanced photon-, proton- or brachytherapy. Radiotherapy and Oncology, 2015, 117, 509-514.	0.6	25
115	Impact of hybrid PET/MR technology on multiparametric imaging and treatment response assessment of cervix cancer. Radiotherapy and Oncology, 2017, 125, 420-425.	0.6	25
116	MRI-based quantification of residual fibroglandular tissue of the breast after conservative mastectomies. European Journal of Radiology, 2018, 104, 1-7.	2.6	25
117	Automatic segmentation and classification of breast lesions through identification of informative multiparametric PET/MRI features. European Radiology Experimental, 2019, 3, 18.	3.4	25
118	Radiomics and Machine Learning with Multiparametric Breast MRI for Improved Diagnostic Accuracy in Breast Cancer Diagnosis. Diagnostics, 2021, 11, 919.	2.6	25
119	Diagnosis and Staging of Breast Cancer: When and How to Use Mammography, Tomosynthesis, Ultrasound, Contrast-Enhanced Mammography, and Magnetic Resonance Imaging. IDKD Springer Series, 2019, , 155-166.	0.8	24
120	Development of a Non-invasive Assessment of Hypoxia and Neovascularization with Magnetic Resonance Imaging in Benign and Malignant Breast Tumors: Initial Results. Molecular Imaging and Biology, 2019, 21, 758-770.	2.6	23
121	Diagnostic accuracy of 18F-FDG PET/CT compared with that of contrast-enhanced MRI of the breast at 3 T. European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42, 1656-1665.	6.4	22
122	Inter- and intra-observer agreement of BI-RADS-based subjective visual estimation of amount of fibroglandular breast tissue with magnetic resonance imaging: comparison to automated quantitative assessment. European Radiology, 2016, 26, 3917-3922.	4.5	22
123	Apparent diffusion coefficient mapping using diffusion-weighted MRI: impact of background parenchymal enhancement, amount of fibroglandular tissue and menopausal status on breast cancer diagnosis. European Radiology, 2018, 28, 2516-2524.	4.5	22
124	Longitudinal Evaluation of Cartilage Composition of Matrix-Associated Autologous Chondrocyte Transplants with 3-T Delayed Gadolinium-Enhanced MRI of Cartilage. American Journal of Roentgenology, 2008, 191, 1391-1396.	2.2	21
125	Quantitative Apparent Diffusion Coefficient Derived From Diffusion-Weighted Imaging Has the Potential to Avoid Unnecessary MRI-Guided Biopsies of mpMRI-Detected PI-RADS 4 and 5 Lesions. Investigative Radiology, 2018, 53, 736-741.	6.2	20
126	Multidimensional Diffusion Magnetic Resonance Imaging for Characterization of Tissue Microstructure in Breast Cancer Patients: A Prospective Pilot Study. Cancers, 2021, 13, 1606.	3.7	20

#	Article	IF	CITATIONS
127	Multiparametric 18F-FDG PET/MRI-Based Radiomics for Prediction of Pathological Complete Response to Neoadjuvant Chemotherapy in Breast Cancer. Cancers, 2022, 14, 1727.	3.7	20
128	The impact of digital mammography on screening a young cohort of women for breast cancer in an urban specialist breast unit. European Radiology, 2011, 21, 676-682.	4.5	19
129	Quantitative Assessment of Breast Parenchymal Uptake on ¹⁸ F-FDG PET/CT: Correlation with Age, Background Parenchymal Enhancement, and Amount of Fibroglandular Tissue on MRI. Journal of Nuclear Medicine, 2016, 57, 1518-1522.	5.0	19
130	Contrast-enhanced dual energy mammography with a novel anode/filter combination and artifact reduction: a feasibility study. European Radiology, 2016, 26, 1575-1581.	4.5	19
131	High-Spatial-Resolution Multishot Multiplexed Sensitivity-encoding Diffusion-weighted Imaging for Improved Quality of Breast Images and Differentiation of Breast Lesions: A Feasibility Study. Radiology Imaging Cancer, 2020, 2, e190076.	1.6	19
132	Comparison of fMRI coregistration results between human experts and software solutions in patients and healthy subjects. European Radiology, 2007, 17, 1634-1643.	4.5	18
133	Magnetic Resonance Imaging-Guided Prostate Biopsy: Institutional Analysis and Systematic Review. RoFo Fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren, 2014, 186, 501-507.	1.3	18
134	Diffusion-weighted imaging of breast tumours at 3ÂTesla and 7ÂTesla: a comparison. European Radiology, 2016, 26, 1466-1473.	4.5	18
135	Mammographic screening in male patients at high risk for breast cancer: is it worth it?. Breast Cancer Research and Treatment, 2019, 177, 705-711.	2.5	18
136	An A.I. classifier derived from 4D radiomics of dynamic contrast-enhanced breast MRI data: potential to avoid unnecessary breast biopsies. European Radiology, 2021, 31, 5866-5876.	4.5	18
137	Reference Data for In Vivo Magnetic Resonance Imaging Properties of Meniscoids in the Cervical Zygapophyseal Joints. Spine, 2008, 33, E778-E783.	2.0	16
138	Multiparametric MRI of the prostate at 3ÂT: limited value of 3D 1H-MR spectroscopy as a fourth parameter. World Journal of Urology, 2016, 34, 649-656.	2.2	16
139	Changes in Tumor Biology During Chemoradiation of Cervix Cancer Assessed by Multiparametric MRI and Hypoxia PET. Molecular Imaging and Biology, 2018, 20, 160-169.	2.6	16
140	Contrast-Enhanced Mammography for Screening Women after Breast Conserving Surgery. Cancers, 2020, 12, 3495.	3.7	16
141	Current Status and Future Perspectives of Artificial Intelligence in Magnetic Resonance Breast Imaging. Contrast Media and Molecular Imaging, 2020, 2020, 1-18.	0.8	16
142	Radiologist-Level Performance by Using Deep Learning for Segmentation of Breast Cancers on MRI Scans. Radiology: Artificial Intelligence, 2022, 4, e200231.	5.8	16
143	Breast Lesion Classification with Multiparametric Breast MRI Using Radiomics and Machine Learning: A Comparison with Radiologists' Performance. Cancers, 2022, 14, 1743.	3.7	16
144	Kinematic biomechanical assessment of human articular cartilage transplants in the knee using 3-T MRI: an in vivo reproducibility study. European Radiology, 2009, 19, 1246-1252.	4.5	14

#	Article	IF	CITATIONS
145	Automated Detection and Segmentation of Nonmass-Enhancing Breast Tumors with Dynamic Contrast-Enhanced Magnetic Resonance Imaging. Contrast Media and Molecular Imaging, 2018, 2018, 1-11.	0.8	14
146	Imaging and the completion of the omics paradigm in breast cancer. Der Radiologe, 2018, 58, 7-13.	1.7	14
147	Histogram Analysis and Visual Heterogeneity of Diffusion-Weighted Imaging with Apparent Diffusion Coefficient Mapping in the Prediction of Molecular Subtypes of Invasive Breast Cancers. Contrast Media and Molecular Imaging, 2019, 2019, 1-9.	0.8	14
148	A survey by the European Society of Breast Imaging on the implementation of breast diffusion-weighted imaging in clinical practice. European Radiology, 2022, 32, 6588-6597.	4.5	14
149	Can we predict lesion detection rates in second-look ultrasound of MRI-detected breast lesions? A systematic analysis. European Journal of Radiology, 2019, 113, 96-100.	2.6	13
150	Diagnostic value of radiomics and machine learning with dynamic contrast-enhanced magnetic resonance imaging for patients with atypical ductal hyperplasia in predicting malignant upgrade. Breast Cancer Research and Treatment, 2021, 187, 535-545.	2.5	13
151	Molecular Imaging in Breast Cancer – Potential Future Aspects. Breast Care, 2011, 6, 110-119.	1.4	12
152	Accuracy of fully automated, quantitative, volumetric measurement of the amount of fibroglandular breast tissue using MRI: correlation with anthropomorphic breast phantoms. NMR in Biomedicine, 2017, 30, e3705.	2.8	12
153	Breast lesion detection and characterization with contrastâ€enhanced magnetic resonance imaging: Prospective randomized intraindividual comparison of gadoterate meglumine (0.15 mmol/kg) and gadobenate dimeglumine (0.075 mmol/kg) at 3T. Journal of Magnetic Resonance Imaging, 2019, 49, 1157-1165.	3.4	12
154	Multiparametric 18F-FDG PET/MRI of the Breast: Are There Differences in Imaging Biomarkers of Contralateral Healthy Tissue Between Patients With and Without Breast Cancer?. Journal of Nuclear Medicine, 2020, 61, 20-25.	5.0	12
155	Clinical relevance of total choline (tCho) quantification in suspicious lesions on multiparametric breast MRI. European Radiology, 2020, 30, 3371-3382.	4.5	12
156	Using Deep Learning to Improve Nonsystematic Viewing of Breast Cancer on MRI. Journal of Breast Imaging, 2021, 3, 201-207.	1.3	12
157	MRI in the Assessment of BI-RADS® 4 lesions. Topics in Magnetic Resonance Imaging, 2017, 26, 191-199.	1.2	11
158	The breast lesion excision system (BLES) under stereotactic guidance cannot be used as a therapeutic tool in the excision of small areas of microcalcifications in the breast. European Journal of Radiology, 2017, 93, 252-257.	2.6	11
159	Differences in degree of lesion enhancement on CEM between ILC and IDC. BJR Open, 2019, 1, 20180046.	0.6	11
160	Preoperative MRI Improves Surgical Planning and Outcomes for Ductal Carcinoma in Situ. Radiology, 2020, 295, 304-306.	7.3	11
161	MRI Screening of <i>BRCA</i> Mutation Carriers: Comparison of Standard Protocol and Abbreviated Protocols With and Without T2-Weighted Images. American Journal of Roentgenology, 2022, 218, 810-820.	2.2	11
162	Dynamical Graph Theory Networks Methods for the Analysis of Sparse Functional Connectivity Networks and for Determining Pinning Observability in Brain Networks. Frontiers in Computational Neuroscience, 2017, 11, 87.	2.1	10

#	Article	IF	CITATIONS
163	Beyond Breast Density: Radiomic Phenotypes Enhance Assessment of Breast Cancer Risk. Radiology, 2019, 290, 50-51.	7.3	10
164	Regional Lymph Node Involvement Among Patients With De Novo Metastatic Breast Cancer. JAMA Network Open, 2020, 3, e2018790.	5.9	10
165	A multiparametric [18F]FDG PET/MRI diagnostic model including imaging biomarkers of the tumor and contralateral healthy breast tissue aids breast cancer diagnosis. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 1878-1888.	6.4	9
166	Sequential [¹⁸ F]FDG-[¹⁸ F]FMISO PET and Multiparametric MRI at 3T for Insights into Breast Cancer Heterogeneity and Correlation with Patient Outcomes: First Clinical Experience. Contrast Media and Molecular Imaging, 2019, 2019, 1-9.	0.8	9
167	Non-Invasive Assessment of Hypoxia and Neovascularization with MRI for Identification of Aggressive Breast Cancer. Cancers, 2020, 12, 2024.	3.7	9
168	Breast <scp>MRI</scp> Background Parenchymal Enhancement Categorization Using Deep Learning: Outperforming the Radiologist. Journal of Magnetic Resonance Imaging, 2022, 56, 1068-1076.	3.4	9
169	Assessing PD-L1 Expression Status Using Radiomic Features from Contrast-Enhanced Breast MRI in Breast Cancer Patients: Initial Results. Cancers, 2021, 13, 6273.	3.7	9
170	Conspicuity of breast cancer according to histopathological type and breast density when imaged by full-field digital mammography compared with screen-film mammography. European Radiology, 2011, 21, 18-25.	4.5	8
171	Automated Semi-Quantitative Analysis of Breast MRI: Potential Imaging Biomarker for the Prediction of Tissue Response to Neoadjuvant Chemotherapy. Breast Care, 2017, 12, 231-236.	1.4	8
172	Virtual Touch IQ elastography reduces unnecessary breast biopsies by applying quantitative "rule-in― and "rule-out―threshold values. Scientific Reports, 2018, 8, 3583.	3.3	8
173	Technical Note: Scintillation well counters and particle counting digital autoradiography devices can be used to detect activities associated with genomic profiling adequacy of biopsy specimens obtained after a low activity ¹⁸ Fâ€ <scp>FDG</scp> injection. Medical Physics, 2018, 45, 2179-2185.	3.0	8
174	Density and tailored breast cancer screening: practice and prediction – an overview. Acta Radiologica Open, 2018, 7, 205846011879121.	0.6	8
175	CommentaryÂACOG Practice Bulletin July 2017: Breast Cancer Risk Assessment andÂScreening in Average-Risk Women. British Journal of Radiology, 2018, 91, 20170907.	2.2	8
176	Clinical applications of breast cancer metabolomics using high-resolution magic angle spinning proton magnetic resonance spectroscopy (HRMAS 1H MRS): systematic scoping review. Metabolomics, 2019, 15, 148.	3.0	8
177	PIK3CA Mutational Status Is Associated with High Glycolytic Activity in ER+/HER2â^' Early Invasive Breast Cancer: a Molecular Imaging Study Using [18F]FDG PET/CT. Molecular Imaging and Biology, 2019, 21, 991-1002.	2.6	8
178	Propagation of structured light through tissue-mimicking phantoms. Optics Express, 2020, 28, 35427.	3.4	8
179	Differentiation Between Benign and Metastatic Breast Lymph Nodes Using Apparent Diffusion Coefficients. Frontiers in Oncology, 2022, 12, 795265.	2.8	8
180	Molecular imaging for the characterization of breast tumors. Expert Review of Anticancer Therapy, 2014, 14, 711-722.	2.4	7

#	Article	IF	CITATIONS
181	Influence of fat-water separation and spatial resolution on automated volumetric MRI measurements of fibroglandular breast tissue . NMR in Biomedicine, 2016, 29, 702-708.	2.8	7
182	A Simple Ultrasound Based Classification Algorithm Allows Differentiation of Benign from Malignant Breast Lesions by Using Only Quantitative Parameters. Molecular Imaging and Biology, 2018, 20, 1053-1060.	2.6	7
183	Multiparametric [11C]Acetate positron emission tomography-magnetic resonance imaging in the assessment and staging of prostate cancer. PLoS ONE, 2017, 12, e0180790.	2.5	7
184	Comparison of 5-megapixel cathode ray tube monitors and 5-megapixel liquid crystal monitors for soft-copy reading in full-field digital mammography. European Journal of Radiology, 2010, 76, 68-72.	2.6	6
185	Dynamical graph theory networks techniques for the analysis of sparse connectivity networks in dementia. , 2017, , .		6
186	Advanced Imaging for Precision Medicine in Breast Cancer: From Morphology to Function. Breast Care, 2017, 12, 208-210.	1.4	6
187	Fat Composition Measured by Proton Spectroscopy: A Breast Cancer Tumor Marker?. Diagnostics, 2021, 11, 564.	2.6	6
188	Teleradiology with uncompressed digital mammograms: Clinical assessment. European Journal of Radiology, 2013, 82, 412-416.	2.6	5
189	Multimodality Imaging of Breast Parenchymal Density and Correlation with Risk Assessment. Current Breast Cancer Reports, 2019, 11, 23-33.	1.0	5
190	Factors influencing agreement of breast cancer luminal molecular subtype by Ki67 labeling index between core needle biopsy and surgical resection specimens. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2020, 477, 545-555.	2.8	5
191	Can second-look ultrasound downgrade MRI-detected lesions? A retrospective study. European Journal of Radiology, 2020, 127, 108976.	2.6	5
192	Determining disease evolution driver nodes in dementia networks. , 2018, , .		5
193	The driving regulators of the connectivity protein network of brain malignancies. , 2017, , .		4
194	MRI background parenchymal enhancement, fibroglandular tissue, and mammographic breast density in patients with invasive lobular breast cancer on adjuvant endocrine hormonal treatment: associations with survival. Breast Cancer Research, 2020, 22, 93.	5.0	4
195	Machine learning for accurate differentiation of benign and malignant breast tumors presenting as non-mass enhancement. , 2018, , .		4
196	Is Background Parenchymal Enhancement an Important Risk Factor for Breast Cancer Development in Women with Increased Risk?. Radiology, 2019, 292, 562-563.	7.3	3
197	Intra- and inter-observer variability in dependence of T1-time correction for common dynamic contrast enhanced MRI parameters in prostate cancer patients. European Journal of Radiology, 2019, 116, 27-33.	2.6	3
198	MRI evaluation of axillary and intramammary lymph nodes in the postoperative period. Breast Journal, 2019, 25, 916-921.	1.0	3

#	Article	IF	CITATIONS
199	Pharmacokinetic Analysis of Dynamic Contrast-Enhanced Magnetic Resonance Imaging at 7T for Breast Cancer Diagnosis and Characterization. Cancers, 2020, 12, 3763.	3.7	3
200	Can Follow-up be Avoided for Probably Benign US Masses with No Enhancement on MRI?. European Radiology, 2021, 31, 975-982.	4.5	3
201	Determining driver nodes in dynamic signed biological networks. , 2019, , .		3
202	Dixon imaging-based partial volume correction improves quantification of choline detected by breast 3D-MRSI. European Radiology, 2015, 25, 830-836.	4.5	2
203	Mammographic Breast Density and Urbanization: Interactions with BMI, Environmental, Lifestyle, and Other Patient Factors. Diagnostics, 2020, 10, 418.	2.6	2
204	Elevated glycine detected on in vivo magnetic resonance spectroscopy in a breast cancer patient: case report and literature review. BJR case Reports, 2020, 6, 20190090.	0.2	2
205	Multi-level analysis of spatio-temporal features in non-mass enhancing breast tumors. , 2018, , .		2
206	The role of positron emission tomography in breast cancer: a short review. Memo - Magazine of European Medical Oncology, 2015, 8, 130-135.	0.5	1
207	Determining the importance of parameters extracted from multi-parametric MRI in the early prediction of the response to neo-adjuvant chemotherapy in breast cancer. , 2018, , .		1
208	T-DM1 in HER2-positive breast cancer brain metastases (BM) Journal of Clinical Oncology, 2014, 32, 650-650.	1.6	1
209	PET/MRI in cervical cancer: Insights into tumor biology Journal of Clinical Oncology, 2015, 33, 5597-5597.	1.6	1
210	MRI-Based Machine Learning Radiomics Can Predict HER2 Expression Level and Pathologic Response after Neoadjuvant Therapy in HER2 Overexpressing Breast Cancer. SSRN Electronic Journal, O, , .	0.4	1
211	Editorial: Impact of Breast MRI on Breast Cancer Treatment and Prognosis. Frontiers in Oncology, 2022, 12, 825101.	2.8	1
212	Factors Influencing Agreement Between Core Needle Biopsy and Surgical Resection Specimens Regarding KI67 Labeling Index – Results of a Retrospective Analysis. Annals of Oncology, 2013, 24, iii13.	1.2	0
213	Visual exploratory analysis of integrated chromosome 19 proteomic data derived from glioma cancer stem-cell lines based on novel nonlinear dimensional data reduction techniques. Proceedings of SPIE, 2015, , .	0.8	0
214	Dynamical complex network theory applied to the therapeutics of brain malignancies. Proceedings of SPIE, 2015, , .	0.8	0
215	Proteomic data analysis of glioma cancer stem-cell lines based on novel nonlinear dimensional data reduction techniques. Proceedings of SPIE, 2016, , .	0.8	0
216	Computer-aided diagnosis of diagnostically challenging lesions in breast MRI: a comparison between a radiomics and a feature-selective approach. , 2016, , .		0

#	Article	IF	CITATIONS
217	Personalized Medicine, Biomarkers of Risk and Breast MRI. , 2017, , 337-349.		0
218	Magnetic Resonance Imaging of the Breast in Surgical Planning. , 2019, , 71-86.		0
219	Multispectral Imaging for Metallic Biopsy Marker Detection During MRI-Guided Breast Biopsy: A Feasibility Study for Clinical Translation. Frontiers in Oncology, 2021, 11, 605014.	2.8	0
220	Molecular subtyping of breast cancer using dedicated breast PET-CT Journal of Clinical Oncology, 2013, 31, e22090-e22090.	1.6	0
221	Effect of multiparametric MRI of the breast on diagnostic accuracy Journal of Clinical Oncology, 2014, 32, 11009-11009.	1.6	0
222	PIK3CA mutational status and correlation with tumor glycolysis imaged with [18F]FDG PET/CT in early primary ER+ / HER2- breast cancer patients: A feasibility study Journal of Clinical Oncology, 2016, 34, e12050-e12050.	1.6	0
223	Multiparametric Imaging: Cutting-Edge Sequences and Techniques Including Diffusion-Weighted Imaging, Magnetic Resonance Spectroscopy, and PET/CT or PET/MRI. , 2017, , 283-320.		0
224	PET/MRI and Molecular Imaging in Breast Cancer. , 2018, , 83-98.		0
225	Model reduction of structural biological networks by cycle removal. , 2019, , .		0
226	and Phenotype Presentation of Breast Cancer with a Special Focus on High-Risk Women. , 2020, , 113-130.		0
227	Editorial for " <scp>Breast Tissue Chemistry Measured</scp> In Vivo in Healthy <scp>Women Correlate With Breast Density</scp> and <scp>Breast Cancer Risk</scp> ― Journal of Magnetic Resonance Imaging, 2022, 56, 1370-1371.	3.4	0
228	Editorial for "TP53 Mutation Estimation Based on Radiomics Analysis for Breast Cancer― Journal of Magnetic Resonance Imaging, 2023, 57, 1104-1105.	3.4	0