
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3698871/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Pathogen-Specific Clinical Mastitis on Milk Yield in Dairy Cows. Journal of Dairy Science, 2004, 87, 3358-3374.	1.4	275
2	Landscape and Meteorological Factors Affecting Prevalence of Three Food-Borne Pathogens in Fruit and Vegetable Farms. Applied and Environmental Microbiology, 2013, 79, 588-600.	1.4	229
3	Risk Factors Associated with Salmonella and Listeria monocytogenes Contamination of Produce Fields. Applied and Environmental Microbiology, 2013, 79, 7618-7627.	1.4	153
4	Listeria monocytogenesin Multiple Habitats and Host Populations: Review of Available Data for Mathematical Modeling. Foodborne Pathogens and Disease, 2006, 3, 319-336.	0.8	105
5	Optimizing replacement of dairy cows: modeling the effects of diseases. Preventive Veterinary Medicine, 2003, 61, 27-43.	0.7	84
6	Addressing Antimicrobial Resistance: An Overview of Priority Actions to Prevent Suboptimal Antimicrobial Use in Food-Animal Production. Frontiers in Microbiology, 2016, 7, 2114.	1.5	82
7	Pathogenesis, Molecular Genetics, and Genomics of Mycobacterium avium subsp. paratuberculosis, the Etiologic Agent of Johne's Disease. Frontiers in Veterinary Science, 2017, 4, 187.	0.9	73
8	The Mediating Effect of Maternal Nutrition Knowledge on the Association between Maternal Schooling and Child Nutritional Status in Lesotho. American Journal of Epidemiology, 1992, 135, 904-914.	1.6	71
9	Microarray Identification of <i>Clostridium difficile</i> Core Components and Divergent Regions Associated with Host Origin. Journal of Bacteriology, 2009, 191, 3881-3891.	1.0	71
10	Quantitative Risk Assessment of Listeriosis-Associated Deaths Due to Listeria monocytogenes Contamination of Deli Meats Originating from Manufacture and Retail. Journal of Food Protection, 2010, 73, 620-630.	0.8	71
11	Effect of pathogen-specific clinical mastitis on herd life in two New York State dairy herds. Preventive Veterinary Medicine, 2005, 71, 105-125.	0.7	63
12	Modeling the Infection Dynamics of Bacteriophages in Enteric Escherichia coli: Estimating the Contribution of Transduction to Antimicrobial Gene Spread. Applied and Environmental Microbiology, 2014, 80, 4350-4362.	1.4	62
13	Nonlinear Mixed Model Analyses of Five Production Disorders of Dairy Cattle. Journal of Dairy Science, 1993, 76, 2765-2772.	1.4	61
14	Prevalence, Distribution, and Diversity of Listeria monocytogenes in Retail Environments, Focusing on Small Establishments and Establishments with a History of Failed Inspections. Journal of Food Protection, 2011, 74, 1083-1095.	0.8	61
15	Mathematical Model of Plasmid-Mediated Resistance to Ceftiofur in Commensal Enteric Escherichia coli of Cattle. PLoS ONE, 2012, 7, e36738.	1.1	61
16	Quantitative Risk Assessment for Listeria monocytogenes in Selected Categories of Deli Meats: Impact of Lactate and Diacetate on Listeriosis Cases and Deaths. Journal of Food Protection, 2009, 72, 978-989.	0.8	60
17	The Mycobacterium avium subsp. paratuberculosis ELISA response by parity and stage of lactation. Preventive Veterinary Medicine, 2002, 54, 1-10.	0.7	58
18	Evaluation of farm management practices as risk factors for clinical listeriosis and fecal shedding of Listeria monocytogenes in ruminants. Journal of the American Veterinary Medical Association, 2005, 227, 1808-1814.	0.2	58

#	Article	IF	CITATIONS
19	En epidemiologisk och genetisk undersökning av sjukdomsdata från finsk Ayrshire boskap. I. Dataset, sjukdomsfrekvens och slakt. Acta Veterinaria Scandinavica, 1986, 27, 182-195.	0.5	57
20	The Effect of Clinical Outbreaks of Salmonellosis on the Prevalence of Fecal <i>Salmonella</i> Shedding Among Dairy Cattle in New York. Foodborne Pathogens and Disease, 2010, 7, 815-823.	0.8	52
21	Quantitative Risk Assessment of Listeriosis Due to Consumption of Raw Milkâ€. Journal of Food Protection, 2011, 74, 1268-1281.	0.8	51
22	Disease management at the wildlifeâ€livestock interface: Using wholeâ€genome sequencing to study the role of elk in <i>Mycobacterium bovis</i> transmission in Michigan, USA. Molecular Ecology, 2019, 28, 2192-2205.	2.0	51
23	Analysis of correlated continuous repeated observations: modelling the effect of ketosis on milk yield in dairy cows. Preventive Veterinary Medicine, 1999, 39, 137-153.	0.7	48
24	<i>Salmonella enterica</i> Serotype Cerro Among Dairy Cattle in New York: An Emerging Pathogen?. Foodborne Pathogens and Disease, 2010, 7, 659-665.	0.8	48
25	Stochastic simulations of a multi-group compartmental model for Johne's disease on US dairy herds with test-based culling intervention. Journal of Theoretical Biology, 2010, 264, 1190-1201.	0.8	47
26	Evaluation of novel oral vaccine candidates and validation of a caprine model of Johne's disease. Frontiers in Cellular and Infection Microbiology, 2014, 4, 26.	1.8	47
27	Microarray for molecular typing of Salmonella enterica serovars. Molecular and Cellular Probes, 2008, 22, 238-243.	0.9	46
28	An Epidemiological and Genetic Study on Registered Diseases in Finnish Ayrshire Cattle. Acta Veterinaria Scandinavica, 1986, 27, 223-234.	0.5	43
29	Epidemiology and genetic basis of ketosis in Finnish Ayrshire cattle. Preventive Veterinary Medicine, 1984, 3, 65-77.	0.7	41
30	Development of a multiplex assay for the detection of antibodies to Borrelia burgdorferi in horses and its validation using Bayesian and conventional statistical methods. Veterinary Immunology and Immunopathology, 2011, 144, 374-381.	0.5	40
31	Longitudinal data collection of Mycobacterium avium subspecies Paratuberculosis infections in dairy herds: the value of precise field data. Veterinary Research, 2015, 46, 65.	1.1	38
32	A rational framework for evaluating the next generation of vaccines against Mycobacterium avium subspecies paratuberculosis. Frontiers in Cellular and Infection Microbiology, 2014, 4, 126.	1.8	37
33	Mathematical Modeling of the Transmission and Control of Foodborne Pathogens and Antimicrobial Resistance at Preharvest. Foodborne Pathogens and Disease, 2011, 8, 1-10.	0.8	36
34	Farm Animal Contact as Risk Factor for Transmission of Bovine-associated <i>Salmonella</i> Subtypes. Emerging Infectious Diseases, 2012, 18, 1929-1936.	2.0	36
35	An Epidemiological and Genetic Study on Registered Diseases in Finnish Ayrshire Cattle. Acta Veterinaria Scandinavica, 1986, 27, 209-222.	0.5	35
36	Milk and Serum J5-Specific Antibody Responses, Milk Production Change, and Clinical Effects following Intramammary Escherichia coli Challenge for J5 Vaccinate and Control Cows. Vaccine Journal, 2007, 14, 693-699.	3.2	33

#	Article	IF	CITATIONS
37	Multilocus Variable-Number Tandem-Repeat Method for Typing <i>Salmonella enterica</i> Serovar Newport. Journal of Clinical Microbiology, 2009, 47, 1934-1938.	1.8	32
38	Daily Variability of Listeria Contamination Patterns in a Cold-Smoked Salmon Processing Operation. Journal of Food Protection, 2006, 69, 2123-2133.	0.8	31
39	Comparison of Public Health Impact of Listeria monocytogenes Product-to-Product and Environment-to-Product Contamination of Deli Meats at Retail. Journal of Food Protection, 2011, 74, 1860-1868.	0.8	31
40	A Mathematical Model for the Transmission of Salmonella Typhimurium within a Grower-Finisher Pig Herd in Great Britain. Journal of Food Protection, 2004, 67, 2403-2409.	0.8	30
41	Mathematical Model of Listeria monocytogenes Cross-Contamination in a Fish Processing Plant. Journal of Food Protection, 2004, 67, 2688-2697.	0.8	30
42	Association of <i>Escherichia coli</i> J5-Specific Serum Antibody Responses with Clinical Mastitis Outcome for J5 Vaccinate and Control Dairy Cattle. Vaccine Journal, 2009, 16, 209-217.	3.2	30
43	Synergistic China–US Ecological Research is Essential for Global Emerging Infectious Disease Preparedness. EcoHealth, 2020, 17, 160-173.	0.9	30
44	Evaluation of multiple radiographic predictors of cartilage lesions in the hip joints of eight-month-old dogs. American Journal of Veterinary Research, 2003, 64, 1472-1478.	0.3	29
45	Pulsed-Field Gel Electrophoresis Diversity of Human and Bovine Clinical <i>Salmonella</i> Isolates. Foodborne Pathogens and Disease, 2010, 7, 707-717.	0.8	29
46	Implementation of Statistical Tools To Support Identification and Management of Persistent Listeria monocytogenes Contamination in Smoked Fish Processing Plants. Journal of Food Protection, 2013, 76, 796-811.	0.8	28
47	Evaluation of eight live attenuated vaccine candidates for protection against challenge with virulent Mycobacterium avium subspecies paratuberculosis in mice. Frontiers in Cellular and Infection Microbiology, 2014, 4, 88.	1.8	28
48	Validation of a Previously Developed Geospatial Model That Predicts the Prevalence of Listeria monocytogenes in New York State Produce Fields. Applied and Environmental Microbiology, 2016, 82, 797-807.	1.4	27
49	The farm cost of decreasing antimicrobial use in dairy production. PLoS ONE, 2018, 13, e0194832.	1.1	27
50	Agar Disk Diffusion and Automated Microbroth Dilution Produce Similar Antimicrobial Susceptibility Testing Results for <i>Salmonella</i> Serotypes Newport, Typhimurium, and 4,5,12:i-, But Differ in Economic Cost. Foodborne Pathogens and Disease, 2011, 8, 1281-1288.	0.8	26
51	Model or meal? Farm animal populations as models for infectious diseases of humans. Nature Reviews Microbiology, 2010, 8, 139-148.	13.6	25
52	Monitoring Antimicrobial Resistance in the Food Supply Chain and Its Implications for FDA Policy Initiatives. Antimicrobial Agents and Chemotherapy, 2016, 60, 5302-5311.	1.4	25
53	The effect of tylosin on antimicrobial resistance in beef cattle enteric bacteria: A systematic review and meta-analysis. Preventive Veterinary Medicine, 2020, 176, 104934.	0.7	25
54	An Epidemiological and Genetic Study on Registered Diseases in Finnish Ayrshire Cattle. Acta Veterinaria Scandinavica, 1986, 27, 196-208.	0.5	25

#	Article	IF	CITATIONS
55	Costâ€Effective Control Strategies for Johne's Disease in Dairy Herds. Canadian Journal of Agricultural Economics, 2013, 61, 583-608.	1.2	24
56	Correlated time to event data: Modeling repeated clinical mastitis data from dairy cattle in New York State. Preventive Veterinary Medicine, 2010, 97, 150-156.	0.7	23
57	Using vaccination to prevent the invasion of Mycobacterium avium subsp. paratuberculosis in dairy herds: A stochastic simulation study. Preventive Veterinary Medicine, 2013, 110, 335-345.	0.7	23
58	Nonparametric estimation of ROC curves based on Bayesian models when the true disease state is unknown. Journal of Agricultural, Biological, and Environmental Statistics, 2007, 12, 128-146.	0.7	22
59	A new compartmental model of Mycobacterium avium subsp. paratuberculosis infection dynamics in cattle. Preventive Veterinary Medicine, 2015, 122, 298-305.	0.7	22
60	Back to the real world: Connecting models with data. Preventive Veterinary Medicine, 2015, 118, 215-225.	0.7	22
61	Mastitis and the shape of the lactation curve in Norwegian dairy cows. Journal of Dairy Research, 2011, 78, 23-31.	0.7	21
62	Screening of Mycobacterium avium subsp. paratuberculosis mutants for attenuation in a bovine monocyte-derived macrophage model. Frontiers in Cellular and Infection Microbiology, 2014, 4, 87.	1.8	21
63	Impact of imperfect Mycobacterium avium subsp. paratuberculosis vaccines in dairy herds: A mathematical modeling approach. Preventive Veterinary Medicine, 2013, 108, 148-158.	0.7	20
64	Use of Pharmacokinetic Modeling to Assess Antimicrobial Pressure on Enteric Bacteria of Beef Cattle Fed Chlortetracycline for Growth Promotion, Disease Control, or Treatment. Foodborne Pathogens and Disease, 2014, 11, 403-411.	0.8	20
65	Transmission Dynamics of a Multidrug-Resistant <i>Salmonella</i> Typhimurium Outbreak in a Dairy Farm. Foodborne Pathogens and Disease, 2010, 7, 467-474.	0.8	19
66	A Diagnostic and Prognostic Tool for Epidemiologic and Economic Analyses of Dairy Herd Health Management. Journal of Dairy Science, 1995, 78, 947-961.	1.4	18
67	Markov chain approach to analyze the dynamics of pathogen fecal shedding—Example of Listeria monocytogenes shedding in a herd of dairy cattle. Journal of Theoretical Biology, 2007, 245, 44-58.	0.8	18
68	Development of a model to simulate infection dynamics of Mycobacterium bovis in cattle herds in the United States. Journal of the American Veterinary Medical Association, 2013, 243, 411-423.	0.2	18
69	Modelling dynamics of plasmid-gene mediated antimicrobial resistance in enteric bacteria using stochastic differential equations. Scientific Reports, 2013, 3, 2463.	1.6	18
70	The effects of health classification and housing and management of feeder pigs on performance and meat inspection findings of all-in–all-out swine-finishing herds. Preventive Veterinary Medicine, 2001, 49, 41-54.	0.7	17
71	Associations of the first occurrence of pathogen-specific clinical mastitis with milk yield and milk composition in dairy cows. Journal of Dairy Research, 2018, 85, 309-316.	0.7	17
72	Sero-prevalence and risk factors associated with African swine fever on pig farms in southwest Nigeria. BMC Veterinary Research, 2015, 11, 133.	0.7	16

#	Article	IF	CITATIONS
73	Assessing the potential impact of Salmonella vaccines in an endemically infected dairy herd. Journal of Theoretical Biology, 2009, 259, 770-784.	0.8	15
74	Minimization of bovine tuberculosis control costs in US dairy herds. Preventive Veterinary Medicine, 2013, 112, 266-275.	0.7	15
75	Minimum cost to control bovine tuberculosis in cow–calf herds. Preventive Veterinary Medicine, 2014, 115, 18-28.	0.7	15
76	Microbial dynamics of indicator microorganisms on fresh tomatoes in the supply chain from Mexico to the USA. International Journal of Food Microbiology, 2016, 238, 202-207.	2.1	15
77	Modeling of Mycobacterium avium subsp. paratuberculosis dynamics in a dairy herd: An individual based approach. Journal of Theoretical Biology, 2016, 408, 105-117.	0.8	15
78	Tradeoffs between resistance to antimicrobials in public health and their use in agriculture: Moving towards sustainability assessment. Ecological Economics, 2019, 166, 106427.	2.9	15
79	Early detection of Mycobacterium avium subsp. paratuberculosis infection in cattle with multiplex-bead based immunoassays. PLoS ONE, 2017, 12, e0189783.	1.1	15
80	Evidence of no protection for a recurrent case of pathogen specific clinical mastitis from a previous case. Journal of Dairy Research, 2016, 83, 72-80.	0.7	14
81	Identification of sero-reactive antigens for the early diagnosis of Johne's disease in cattle. PLoS ONE, 2017, 12, e0184373.	1.1	14
82	Effect of preparing and loading multiple insemination guns on conception rate in two large commercial dairy herds. Theriogenology, 2002, 57, 909-921.	0.9	13
83	An agent-based model evaluation of economic control strategies for paratuberculosis in a dairy herd. Journal of Dairy Science, 2018, 101, 6443-6454.	1.4	13
84	Sow removal in commercial herds: Patterns and animal level factors in Finland. Preventive Veterinary Medicine, 2018, 159, 30-39.	0.7	13
85	Global resistance to antimicrobials and their sustainable use in agriculture. Lancet Planetary Health, The, 2019, 3, e109-e110.	5.1	13
86	The value of pathogen information in treating clinical mastitis. Journal of Dairy Research, 2016, 83, 456-463.	0.7	12
87	Optimally achieving milk bulk tank somatic cell count thresholds. Journal of Dairy Science, 2017, 100, 731-738.	1.4	12
88	Clinical Features of Human Salmonellosis Caused by Bovine-Associated Subtypes in New York. Foodborne Pathogens and Disease, 2012, 9, 796-802.	0.8	11
89	An assessment of the economic costs to the U.S. dairy market of antimicrobial use restrictions. Preventive Veterinary Medicine, 2018, 160, 63-67.	0.7	11
90	Antimicrobial Policies in United States Beef Production: Choosing the Right Instruments to Reduce Antimicrobial Use and Resistance Under Structural and Market Constraints. Frontiers in Veterinary Science, 2019, 6, 245.	0.9	11

#	Article	IF	CITATIONS
91	Inferring the interaction structure of resistance to antimicrobials. Preventive Veterinary Medicine, 2018, 152, 81-88.	0.7	10
92	Shared Multidrug Resistance Patterns in Chicken-Associated Escherichia coli Identified by Association Rule Mining. Frontiers in Microbiology, 2019, 10, 687.	1.5	10
93	Who infects whom?—Reconstructing infection chains of Mycobacterium avium ssp. paratuberculosis in an endemically infected dairy herd by use of genomic data. PLoS ONE, 2021, 16, e0246983.	1.1	10
94	Economic effects of policy options restricting antimicrobial use for high risk cattle placed in U.S. feedlots. PLoS ONE, 2020, 15, e0239135.	1.1	9
95	Monte Carlo Simulations Suggest Current Chlortetracycline Drug-Residue Based Withdrawal Periods Would Not Control Antimicrobial Resistance Dissemination from Feedlot to Slaughterhouse. Frontiers in Microbiology, 2017, 8, 1753.	1.5	8
96	Transmission dynamics of intramammary infections caused by Corynebacterium species. Journal of Dairy Science, 2018, 101, 472-479.	1.4	8
97	A data-driven individual-based model of infectious disease in livestock operation: A validation study for paratuberculosis. PLoS ONE, 2018, 13, e0203177.	1.1	8
98	Postharvest Supply Chain with Microbial Travelers: a Farm-to-Retail Microbial Simulation and Visualization Framework. Applied and Environmental Microbiology, 2018, 84, .	1.4	8
99	Assessment of the bovine tuberculosis elimination protocol in the United States. Journal of Dairy Science, 2019, 102, 2384-2400.	1.4	8
100	Economics of reducing antibiotic usage for clinical mastitis and metritis through genomic selection. Journal of Dairy Science, 2020, 103, 473-491.	1.4	8
101	Analysis of Mycobacterium avium subsp. paratuberculosis mutant libraries reveals loci-dependent transposition biases and strategies for novel mutant discovery. Microbiology (United Kingdom), 2016, 162, 633-641.	0.7	8
102	Economic Analysis of the Crossâ€Reactivity of Johne's Disease Vaccination with Tuberculosis in Dairy Cattle. American Journal of Agricultural Economics, 2010, 92, 1446-1455.	2.4	7
103	Responding to Bioterror Concerns by Increasing Milk Pasteurization Temperature Would Increase Estimated Annual Deaths from Listeriosis. Journal of Food Protection, 2014, 77, 696-705.	0.8	7
104	Ewe characteristics associated with neonatal loss in Norwegian sheep. Preventive Veterinary Medicine, 2014, 114, 267-275.	0.7	7
105	A proposed analytic framework for determining the impact of an antimicrobial resistance intervention. Animal Health Research Reviews, 2017, 18, 1-25.	1.4	7
106	Identification of Sero-Diagnostic Antigens for the Early Diagnosis of Johne's Disease using MAP Protein Microarrays. Scientific Reports, 2019, 9, 17573.	1.6	7
107	Genetic and seasonal variations of Trypanosoma theileri and the association of Trypanosoma theileri infection with dairy cattle productivity in Northern Japan. Parasitology International, 2022, 86, 102476.	0.6	7
108	A critical evaluation of Mycobacterium bovis pangenomics, with reference to its utility in outbreak investigation. Microbial Genomics, 2022, 8, .	1.0	7

#	Article	IF	CITATIONS
109	Development of a microarray for identification of pathogenic Clostridium spp Diagnostic Microbiology and Infectious Disease, 2010, 66, 140-147.	0.8	6
110	Progression to multi-scale models and the application to food system intervention strategies. Preventive Veterinary Medicine, 2015, 118, 238-246.	0.7	6
111	Analysis of Multidrug Resistance in Staphylococcus aureus with a Machine Learning-Generated Antibiogram. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	6
112	Comparison of China's and the European Union's Approaches to Antimicrobial Stewardship in the Pork Industry. Foodborne Pathogens and Disease, 2021, 18, 567-573.	0.8	6
113	Approach to complexity in veterinary epidemiology : example of cattle reproduction. Natures Sciences Societes, 1996, 4, 23-34.	0.1	6
114	Dairy cow characteristics related to <i>Staphylococcus aureus</i> isolation from quarter samples. Journal of Dairy Research, 1995, 62, 69-81.	0.7	5
115	Fecal shedding of, antimicrobial resistance in, and serologic response toSalmonellaTyphimurium in dairy calves. Journal of the American Veterinary Medical Association, 2009, 235, 739-748.	0.2	5
116	Stochastic Modeling of Imperfect Salmonella Vaccines in an Adult Dairy Herd. Bulletin of Mathematical Biology, 2014, 76, 541-565.	0.9	5
117	Within- and between-host mathematical modeling of Mycobacterium avium subspecies paratuberculosis (MAP) infections as a tool to study the dynamics of host-pathogen interactions in bovine paratuberculosis. Veterinary Research, 2015, 46, 60.	1.1	5
118	Use of Approximate Bayesian Computation to Assess and Fit Models of Mycobacterium leprae to Predict Outcomes of the Brazilian Control Program. PLoS ONE, 2015, 10, e0129535.	1.1	5
119	Farrowing unit housing and management factors associated with diseases and disease signs of importance for feeder pig quality. Acta Agriculturae Scandinavica - Section A: Animal Science, 1997, 47, 117-125.	0.2	4
120	Mastitis risk effect on the economic consequences of paratuberculosis control in dairy cattle: A stochastic modeling study. PLoS ONE, 2019, 14, e0217888.	1.1	4
121	Estimation of multidrug resistance variability in the National Antimicrobial Monitoring System. Preventive Veterinary Medicine, 2019, 167, 137-145.	0.7	4
122	Evolutionary Genomic and Bacterial Genome-Wide Association Study of Mycobacterium avium subsp. <i>paratuberculosis</i> and Dairy Cattle Johne's Disease Phenotypes. Applied and Environmental Microbiology, 2021, 87, .	1.4	4
123	Forecasting clinical disease in pigs: comparing a naive and a Bayesian approach. Preventive Veterinary Medicine, 2004, 64, 85-100.	0.7	3
124	Extreme value theory in analysis of differential expression in microarrays where either only up- or down-regulated genes are relevant or expected. Genetical Research, 2008, 90, 347-361.	0.3	3
125	Modeling the Effect of Tylosin Phosphate on Macrolide-Resistant Enterococci in Feedlots and Reducing Resistance Transmission. Foodborne Pathogens and Disease, 2021, 18, 85-96.	0.8	3
126	A brief note on a multistrain SIR model with complete cross-protection and nonlinear force of infection. Communications in Nonlinear Science and Numerical Simulation, 2021, 103, 106001.	1.7	3

#	Article	IF	CITATIONS
127	How University Researchers Can Contribute to Farm-to-Table Risk Assessments: <i>Listeria monocytogenes</i> as an Example. Foodborne Pathogens and Disease, 2007, 4, 527-537.	0.8	2
128	How do veterinarians influence sales of antimicrobials? A spatialâ€temporal analysis of the French prescribingâ€delivery complex in cattle. Zoonoses and Public Health, 2020, 67, 231-242.	0.9	2
129	Characterizing infectious disease progression through discrete states using hidden Markov models. PLoS ONE, 2020, 15, e0242683.	1.1	2
130	Is <i>Salmonella enterica</i> shared between wildlife and cattle in cattle farming areas? An 11â€year retrospective study in Tokachi district, Hokkaido, Japan. Veterinary Medicine and Science, 2022, 8, 758-770.	0.6	2
131	Optimal levels of inputs to controlListeria monocytogenes contamination at a smoked fish plant. Agribusiness, 2007, 23, 229-244.	1.9	1
132	Expanding behavior pattern sensitivity analysis with model selection and survival analysis. BMC Veterinary Research, 2018, 14, 355.	0.7	1
133	System Economic Costs of Antibiotic Use Elimination in the US Beef Supply Chain. Frontiers in Veterinary Science, 2021, 8, 606810.	0.9	0
134	Fertility risk factors in transferring Japanese Black embryos into dairy heifers: An epidemiological study. Veterinary and Animal Science, 2021, 13, 100193.	0.6	0