Haijun Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3698569/publications.pdf

Version: 2024-02-01

53789 85537 5,682 121 45 71 citations h-index g-index papers 125 125 125 3711 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Automatic taxonomic identification based on the Fossil Image Dataset (>415,000 images) and deep convolutional neural networks. Paleobiology, 2023, 49, 1-22.	2.0	13
2	Background Earth system state amplified Carnian (Late Triassic) environmental changes. Earth and Planetary Science Letters, 2022, 578, 117321.	4.4	14
3	PEDOT-based thermoelectric nanocomposites/hybrids. , 2022, , 165-198.		O
4	Environmental crises at the Permian–Triassic mass extinction. Nature Reviews Earth & Environment, 2022, 3, 197-214.	29.7	78
5	Paleozoic-Mesozoic turnover of marine biological pump and Mesozoic plankton revolution. Chinese Science Bulletin, 2022, 67, 1660-1676.	0.7	5
6	A new Early Triassic brachiopod fauna from southern Tibet, China: Implications on brachiopod recovery and the late Smithian extinction in southern Tethys. Journal of Paleontology, 2022, 96, 1-32.	0.8	5
7	A massive magmatic degassing event drove the Late Smithian Thermal Maximum and Smithian–Spathian boundary mass extinction. Global and Planetary Change, 2022, 215, 103878.	3.5	9
8	黔西滇东地匰二å纪-三åçºªä¹‹äºæœ‰æœºç¢³åŒä½ç´â'Œç"Ÿç‰©åœ°å±,å⁻¹æ⁻". Diqiu Kexue - Zh Geosciences, 2022, 47, 2264.	nongguo D	Dizhi Daxue Xu
9	Changes in productivity associated with algal-microbial shifts during the Early Triassic recovery of marine ecosystems. Bulletin of the Geological Society of America, 2021, 133, 362-378.	3.3	19
10	A Changhsingian (late Permian) nautiloid assemblage from Gujiao, South China. Papers in Palaeontology, 2021, 7, 329-351.	1.5	1
11	High performance polypyrrole/SWCNTs composite film as a promising organic thermoelectric material. RSC Advances, 2021, 11, 17704-17709.	3.6	14
12	Conodont calcium isotopic evidence for multiple shelf acidification events during the Early Triassic. Chemical Geology, 2021, 562, 120038.	3.3	28
13	Phanerozoic variation in dolomite abundance linked to oceanic anoxia. Geology, 2021, 49, 698-702.	4.4	27
14	Phanerozoic paleotemperatures: The earth's changing climate during the last 540 million years. Earth-Science Reviews, 2021, 215, 103503.	9.1	259
15	Six-fold increase of atmospheric pCO2 during the Permian–Triassic mass extinction. Nature Communications, 2021, 12, 2137.	12.8	52
16	Tunable thermoelectric properties of free-standing PEDOT nanofiber film through adjusting its nanostructure. Synthetic Metals, 2021, 275, 116742.	3.9	9
17	Morphological selectivity of the Permian-Triassic ammonoid mass extinction. Geology, 2021, 49, 1112-1116.	4.4	5
18	Computational fluid dynamics confirms drag reduction associated with trilobite queuing behaviour. Palaeontology, 2021, 64, 597-608.	2.2	8

#	Article	IF	CITATIONS
19	Calibrating the late Smithian (Early Triassic) crisis: New insights from the Nanpanjiang Basin, South China. Global and Planetary Change, 2021, 201, 103492.	3.5	8
20	Thresholds of temperature change for mass extinctions. Nature Communications, 2021, 12, 4694.	12.8	66
21	Phanerozoic variation in dolomite abundance linked to oceanic anoxia: REPLY. Geology, 2021, 49, e536-e537.	4.4	1
22	Phylogenetic classification and evolution of Early Triassic conodonts. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, , 110731.	2.3	3
23	Significantly enhanced thermoelectric performance of flexible PEDOT nanowire film via coating Te nanostructures. Journal of Materiomics, 2020, 6, 364-370.	5.7	28
24	Size variations in foraminifers from the early Permian to the Late Triassic: implications for the Guadalupian–Lopingian and the Permian–Triassic mass extinctions. Paleobiology, 2020, 46, 511-532.	2.0	12
25	Migration controls extinction and survival patterns of foraminifers during the Permian-Triassic crisis in South China. Earth-Science Reviews, 2020, 209, 103329.	9.1	12
26	Toward an understanding of cosmopolitanism in deep time: a case study of ammonoids from the middle Permian to the Middle Triassic. Paleobiology, 2020, 46, 533-549.	2.0	18
27	Extinction and dawn of the modern world in the Carnian (Late Triassic). Science Advances, 2020, 6, .	10.3	116
28	Automatic identification of fossils and abiotic grains during carbonate microfacies analysis using deep convolutional neural networks. Sedimentary Geology, 2020, 410, 105790.	2.1	27
29	Flat latitudinal diversity gradient caused by the Permian–Triassic mass extinction. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17578-17583.	7.1	50
30	Ecological disturbance in tropical peatlands prior to marine Permian-Triassic mass extinction. Geology, 2020, 48, 288-292.	4.4	69
31	Two pulses of extinction of larger benthic foraminifera during the Pliensbachian-Toarcian and early Toarcian environmental crises. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 560, 109998.	2.3	13
32	Environmental instability prior to end-Permian mass extinction reflected in biotic and facies changes on shallow carbonate platforms of the Nanpanjiang Basin (South China). Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 519, 23-36.	2.3	21
33	Size variation of brachiopods from the Late Permian through the Middle Triassic in South China: Evidence for the Lilliput Effect following the Permian-Triassic extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 519, 248-257.	2.3	17
34	A dolomitization event at the oceanic chemocline during the Permian-Triassic transition: REPLY. Geology, 2019, 47, e468-e468.	4.4	0
35	Early Triassic oceanic red beds coupled with deep sea oxidation in South Tethys. Sedimentary Geology, 2019, 391, 105519.	2.1	14
36	Cooling-driven oceanic anoxia across the Smithian/Spathian boundary (mid-Early Triassic). Earth-Science Reviews, 2019, 195, 133-146.	9.1	57

#	Article	IF	Citations
37	Free-standing and highly conductive PEDOT nanowire films for high-performance all-solid-state supercapacitors. Journal of Materials Chemistry A, 2019, 7, 1323-1333.	10.3	106
38	Mercury enrichments provide evidence of Early Triassic volcanism following the end-Permian mass extinction. Earth-Science Reviews, 2019, 195, 191-212.	9.1	81
39	Carbonate thermoluminescence and its implication for marine productivity change during the Permian-Triassic transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 526, 72-79.	2.3	5
40	Seawater Temperature and Dissolved Oxygen over the Past 500 Million Years. Journal of Earth Science (Wuhan, China), 2019, 30, 236-243.	3.2	106
41	Facies and evolution of the carbonate factory during the Permian–Triassic crisis in South Tibet, China. Sedimentology, 2019, 66, 3008-3028.	3.1	9
42	Good Performance and Flexible PEDOT:PSS/Cu ₂ Se Nanowire Thermoelectric Composite Films. ACS Applied Materials & Diterfaces, 2019, 11, 12819-12829.	8.0	153
43	Progress on PEDOT:PSS/Nanocrystal Thermoelectric Composites. Advanced Electronic Materials, 2019, 5, 1800822.	5.1	70
44	A new Griesbachian–Dienerian (Induan, Early Triassic) ammonoid fauna from Gujiao, South China. Journal of Paleontology, 2019, 93, 48-71.	0.8	10
45	Free-standing highly conducting PEDOT films for flexible thermoelectric generator. Energy, 2019, 170, 53-61.	8.8	81
46	Triassic integrative stratigraphy and timescale of China. Science China Earth Sciences, 2019, 62, 189-222.	5 . 2	60
47	Rapid biotic rebound during the late Griesbachian indicates heterogeneous recovery patterns after the Permian-Triassic mass extinction. Bulletin of the Geological Society of America, 2018, 130, 2015-2030.	3.3	22
48	A dolomitization event at the oceanic chemocline during the Permian-Triassic transition. Geology, 2018, 46, 1043-1046.	4.4	29
49	Preparation and Characterization of Te/Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate)/Cu ₇ Te ₄ Ternary Composite Films for Flexible Thermoelectric Power Generator. ACS Applied Materials & Samp; Interfaces, 2018, 10, 42310-42319.	8.0	74
50	Decoupled taxonomic and ecological recoveries from the Permo-Triassic extinction. Science Advances, 2018, 4, eaat5091.	10.3	72
51	End-Permian mass extinction of calcareous algae and microproblematica from Liangfengya, South China. Geobios, 2018, 51, 401-418.	1.4	9
52	Lower Triassic deep sea carbonate precipitates from South Tibet, China. Sedimentary Geology, 2018, 376, 60-71.	2.1	5
53	TWO EPISODES OF CAPITANIAN (MIDDLE PERMIAN) MASS EXTINCTION LINKED TO OCEANIC ANOXIA. , 2018, , .		0
54	THE CORRELATIONÂOF THEÂPERMIAN–TRIASSIC TRANSITIONALÂBEDSÂAND MASS EXTINCTION INÂCONTINENTAL-MARINE SILICICLASTIC SETTINGSÂOFÂWESTERN GUIZHOU AND EASTERN YUNNAN, SOUTHWESTERN CHINA. , 2018, , .		0

#	Article	IF	CITATIONS
55	Microbial mats in the terrestrial Lower Triassic of North China and implications for the Permian–Triassic mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 474, 214-231.	2.3	34
56	Taphonomy and palaeobiology of early Middle Triassic coprolites from the Luoping biota, southwest China: Implications for reconstruction of fossil food webs. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 474, 232-246.	2.3	31
57	Conodont and ammonoid biostratigraphies around the Permian-Triassic boundary from the Jianzishan of South China. Journal of Earth Science (Wuhan, China), 2017, 28, 595-613.	3.2	14
58	The onset of widespread marine red beds and the evolution of ferruginous oceans. Nature Communications, 2017, 8, 399.	12.8	86
59	A new Dienerian (Early Triassic) brachiopod fauna from South China and implications for biotic recovery after the Permian–Triassic extinction. Papers in Palaeontology, 2017, 3, 425-439.	1.5	13
60	Highâ€Performance and Breathable Polypyrrole Coated Airâ€Laid Paper for Flexible Allâ€Solidâ€State Supercapacitors. Advanced Energy Materials, 2017, 7, 1701247.	19.5	167
61	Comment on "Quantitative biochronology of the Permian–Triassic boundary in South China based on conodont unitary associations―by Brosse et al. (2016). Earth-Science Reviews, 2017, 164, 257-258.	9.1	6
62	Uranium and carbon isotopes document global-ocean redox-productivity relationships linked to cooling during the Frasnian-Famennian mass extinction. Geology, 2017, 45, 887-890.	4.4	66
63	Enhanced thermoelectric properties of PEDOT/PSS/Te composite films treated with H2SO4. Journal of Nanoparticle Research, 2016, $18,1.$	1.9	33
64	Upper Lower Triassic stromatolite from Anhui, South China: Geobiologic features and paleoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 452, 40-54.	2.3	25
65	Early Triassic disaster and opportunistic foraminifers in South China. Geological Magazine, 2016, 153, 298-315.	1.5	24
66	Biostratigraphic correlation and mass extinction during the Permian-Triassic transition in terrestrial-marine siliciclastic settings of South China. Global and Planetary Change, 2016, 146, 67-88.	3.5	53
67	Simultaneously enhanced electrical conductivity and Seebeck coefficient in Poly (3,4-ethylenedioxythiophene) films treated with hydroiodic acid. Synthetic Metals, 2016, 220, 585-590.	3.9	26
68	Lower-Middle Triassic conodont biostratigraphy of the Mingtang section, Nanpanjiang Basin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 459, 381-393.	2.3	32
69	Influence of polymerization method on the thermoelectric properties of multi-walled carbon nanotubes/polypyrrole composites. Synthetic Metals, 2016, 211, 58-65.	3.9	72
70	Reply to the comment on Chu et al., "Lilliput effect in freshwater ostracods during the Permian–Triassic extinction―[Palaeogeography, Palaeoclimatology, Palaeoecology 435 (2015): 38–52]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 440, 863-865.	2.3	4
71	Integrated Sr isotope variations and global environmental changes through the Late Permian to early Late Triassic. Earth and Planetary Science Letters, 2015, 424, 140-147.	4.4	130
72	Recovery dynamics of foraminifers and algae following the Permian-Triassic extinction in Qingyan, South China. Geobios, 2015, 48, 71-83.	1.4	19

#	Article	IF	CITATIONS
73	Significant conductivity enhancement of PEDOT:PSS films treated with lithium salt solutions. Journal of Materials Science: Materials in Electronics, 2015, 26, 429-434.	2.2	23
74	Simultaneous Enhancement of the Electrical Conductivity and Seebeck Coefficient of PEDOT-block-PEG/SWCNTs Nanocomposites. Journal of Electronic Materials, 2015, 44, 1585-1591.	2.2	17
75	Improved Thermoelectric Properties of PEDOT:PSS Nanofilms Treated with Oxalic Acid. Journal of Electronic Materials, 2015, 44, 1791-1795.	2.2	10
76	Early Triassic wrinkle structures on land: stressed environments and oases for life. Scientific Reports, 2015, 5, 10109.	3.3	48
77	Recovery pattern of brachiopods after the Permian–Triassic crisis in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 433, 91-105.	2.3	19
78	Lilliput effect in freshwater ostracods during the Permian–Triassic extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 435, 38-52.	2.3	44
79	PEDOT:PSS film: a novel flexible organic electrode for facile electrodeposition of dendritic tellurium nanostructures. Journal of Materials Science, 2015, 50, 4813-4821.	3.7	11
80	Early Triassic trace fossils from the Three Gorges area of South China: Implications for the recovery of benthic ecosystems following the Permian–Triassic extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 429, 100-116.	2.3	34
81	Rapid carbonate depositional changes following the Permian-Triassic mass extinction: Sedimentary evidence from South China. Journal of Earth Science (Wuhan, China), 2015, 26, 166-180.	3.2	20
82	Stratigraphic position of the Ediacaran Miaohe biota and its constrains on the age of the upper Doushantuo 1°13 C anomaly in the Yangtze Gorges area, South China. Precambrian Research, 2015, 271, 243-253.	2.7	97
83	DISTRIBUTION AND SIZE VARIATION OF OOIDS IN THE AFTERMATH OF THE PERMIAN–TRIASSIC MASS EXTINCTION. Palaios, 2015, 30, 714-727.	1.3	25
84	Late Permian marine ecosystem collapse began in deeper waters: evidence from brachiopod diversity and body size changes. Geobiology, 2015, 13, 123-138.	2.4	63
85	Preparation of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)/Fe ₃ O ₄ nanocomposite film and its thermoelectric performance. Journal of Composite Materials, 2014, 48, 2793-2801.	2.4	9
86	Paper: An effective substrate for the enhancement of thermoelectric properties in PEDOT:PSS. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 737-742.	2.1	54
87	Thermoelectric performance of poly(3-hexylthiophene) films doped by iodine vapor with promising high seebeck coefficient. Electronic Materials Letters, 2014, 10, 427-431.	2.2	17
88	Reconstruction of Early Triassic ocean redox conditions based on framboidal pyrite from the Nanpanjiang Basin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 412, 68-79.	2.3	85
89	The microfacies and sedimentary responses to the mass extinction during the Permian-Triassic transition at Yangou Section, Jiangxi Province, South China. Science China Earth Sciences, 2014, 57, 2195-2207.	5.2	21
90	Paleo-redox conditions across the Permian-Triassic boundary in shallow carbonate platform of the Nanpanjiang Basin, South China. Science China Earth Sciences, 2014, 57, 1030-1038.	5.2	17

#	Article	IF	Citations
91	Facile preparation of highly water-stable and flexible PEDOT:PSS organic/inorganic composite materials and their application in electrochemical sensors. Sensors and Actuators B: Chemical, 2014, 196, 357-369.	7.8	89
92	Early Triassic seawater sulfate drawdown. Geochimica Et Cosmochimica Acta, 2014, 128, 95-113.	3.9	136
93	Anoxia/high temperature double whammy during the Permian-Triassic marine crisis and its aftermath. Scientific Reports, 2014, 4, 4132.	3.3	144
94	Improved thermoelectric performance of PEDOT:PSS films prepared by polar-solvent vapor annealing method. Journal of Materials Science: Materials in Electronics, 2013, 24, 4240-4246.	2.2	48
95	Mass extinction and Pangea integration during the Paleozoic-Mesozoic transition. Science China Earth Sciences, 2013, 56, 1791-1803.	5.2	47
96	Improved Thermoelectric Performance of Free-Standing PEDOT:PSS/Bi2Te3 Films with Low Thermal Conductivity. Journal of Electronic Materials, 2013, 42, 1268-1274.	2.2	92
97	Large vertical δ13CDIC gradients in Early Triassic seas of the South China craton: Implications for oceanographic changes related to Siberian Traps volcanism. Global and Planetary Change, 2013, 105, 7-20.	3.5	173
98	Effect of solution pH value on thermoelectric performance of free-standing PEDOT:PSS films. Synthetic Metals, 2013, 185-186, 31-37.	3.9	38
99	Improved thermoelectric performance of PEDOT:PSS film treated with camphorsulfonic acid. Journal of Polymer Research, 2013, 20, 1.	2.4	18
100	Effects of a proton scavenger on the thermoelectric performance of free-standing polythiophene and its derivative films. Synthetic Metals, 2013, 181, 23-26.	3.9	36
101	Fabrication of a layered nanostructure PEDOT:PSS/SWCNTs composite and its thermoelectric performance. RSC Advances, 2013, 3, 22065.	3.6	112
102	Two pulses of extinction during the Permian–Triassic crisis. Nature Geoscience, 2013, 6, 52-56.	12.9	335
103	Facile Fabrication of PEDOT:PSS/Polythiophenes Bilayered Nanofilms on Pure Organic Electrodes and Their Thermoelectric Performance. ACS Applied Materials & Interfaces, 2013, 5, 12811-12819.	8.0	87
104	Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian–Triassic transition and the link with end-Permian extinction and recovery. Earth and Planetary Science Letters, 2012, 353-354, 12-21.	4.4	147
105	The large increase of $\hat{\Gamma}$ 13Ccarb-depth gradient and the end-Permian mass extinction. Science China Earth Sciences, 2012, 55, 1101-1109.	5.2	49
106	Recovery tempo and pattern of marine ecosystems after the end-Permian mass extinction. Geology, 2011, 39, 739-742.	4.4	131
107	Composition and structure of microbialite ecosystems following the end-Permian mass extinction in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308, 111-128.	2.3	117
108	Evolutionary dynamics of the Permian–Triassic foraminifer size: Evidence for Lilliput effect in the end-Permian mass extinction and its aftermath. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308, 98-110.	2.3	92

#	Article	IF	Citations
109	Size variation of foraminifers during the Permian-Triassic transition at Meishan Section, South China. Journal of Earth Science (Wuhan, China), 2010, 21, 154-157.	3.2	3
110	Excursion of sulfur isotope compositions in the Lower Triassic of South Guizhou, China. Journal of Earth Science (Wuhan, China), 2010, 21, 158-160.	3.2	3
111	Ostracod fauna across the Permian-Triassic boundary at Chongyang, Hubei Province, and its implication for the process of the mass extinction. Science China Earth Sciences, 2010, 53, 810-817.	5.2	23
112	Ecological evolution across the Permian/Triassic boundary at the Kangjiaping Section in Cili County, Hunan Province, China. Science in China Series D: Earth Sciences, 2009, 52, 797-806.	0.9	41
113	Two episodes of foraminiferal extinction near the Permian–Triassic boundary at the Meishan section, South China. Australian Journal of Earth Sciences, 2009, 56, 765-773.	1.0	68
114	End-Permian mass extinction of foraminifers in the Nanpanjiang basin, South China. Journal of Paleontology, 2009, 83, 718-738.	0.8	66
115	Environmental and biotic turnover across the Permian–Triassic boundary on a shallow carbonate platform in western Zhejiang, South China. Australian Journal of Earth Sciences, 2009, 56, 775-797.	1.0	90
116	Foraminiferal survivors from the Permian-Triassic mass extinction in the Meishan section, South China. Palaeoworld, 2007, 16, 105-119.	1.1	45
117	Application of Gafchromic \hat{A}^{0} film in the dosimetry of an intravascular brachytherapy source. Medical Physics, 2006, 33, 2519-2524.	3.0	2
118	Evaluation of the EDR-2 film for relative dosimetry of high-energy photon and electron beams. Radiation Protection Dosimetry, 2006, 120, 159-162.	0.8	4
119	Limitations of silicon diodes for clinical electron dosimetry. Radiation Protection Dosimetry, 2006, 120, 56-59.	0.8	19
120	Calculation of brachytherapy doses does not need TG-43 factorization. Medical Physics, 2003, 30, 997-999.	3.0	3
121	A new perleidid neopterygian fish from the Early Triassic (Dienerian, Induan) of South China, with a reassessment of the relationships of Perleidiformes. Peerl, 0, 10, e13448.	2.0	4