Frank Neumann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3698568/publications.pdf

Version: 2024-02-01

230 papers 4,286 citations

28 h-index 206029 48 g-index

245 all docs

245 docs citations

times ranked

245

1520 citing authors

#	Article	IF	CITATIONS
1	Pareto optimization for subset selection with dynamic cost constraints. Artificial Intelligence, 2022, 302, 103597.	3.9	11
2	Run-of-mine stockyard recovery scheduling and optimisation for multiple reclaimers. , 2022, , .		1
3	Single- and multi-objective evolutionary algorithms for the knapsack problem with dynamically changing constraints. Theoretical Computer Science, 2022, 924, 129-147.	0.5	4
4	Coevolutionary Pareto diversity optimization. , 2022, , .		6
5	Niching-based evolutionary diversity optimization for the traveling salesperson problem. , 2022, , .		1
6	On the use of quality diversity algorithms for the traveling thief problem. , 2022, , .		12
7	Improved Runtime Results for Simple Randomised Search Heuristics on Linear Functions with a Uniform Constraint. Algorithmica, 2021, 83, 3209-3237.	1.0	2
8	Feature-Based Diversity Optimization for Problem Instance Classification. Evolutionary Computation, 2021, 29, 107-128.	2.3	18
9	Runtime Performances of Randomized Search Heuristics for the Dynamic Weighted Vertex Cover Problem. Algorithmica, 2021, 83, 906-939.	1.0	5
10	Solving Non-uniform Planted and Filtered Random SAT Formulas Greedily. Lecture Notes in Computer Science, 2021, , 188-206.	1.0	0
11	Modelling and optimization of run-of-mine stockpile recovery. , 2021, , .		O
12	Breeding diverse packings for the knapsack problem by means of diversity-tailored evolutionary algorithms. , $2021, \ldots$		11
13	Entropy-based evolutionary diversity optimisation for the traveling salesperson problem. , 2021, , .		14
14	Heuristic Strategies for Solving Complex Interacting Large-Scale Stockpile Blending Problems. , 2021, , .		1
15	Diversifying greedy sampling and evolutionary diversity optimisation for constrained monotone submodular functions., 2021,,.		15
16	Evolutionary diversity optimization and the minimum spanning tree problem. , $2021, \ldots$		14
17	Runtime analysis of RLS and the $(1+1)$ EA for the chance-constrained knapsack problem with correlated uniform weights. , 2021, , .		9
18	Analysis of evolutionary diversity optimisation for permutation problems. , 2021, , .		13

#	Article	IF	CITATIONS
19	Time Complexity Analysis of Randomized Search Heuristics for the Dynamic Graph Coloring Problem. Algorithmica, 2021, 83, 3148-3179.	1.0	2
20	Evolutionary submodular optimisation. , 2021, , .		0
21	Computing diverse sets of high quality TSP tours by EAX-based evolutionary diversity optimisation. , 2021, , .		6
22	Time complexity analysis of evolutionary algorithms for 2-hop $(1,2)$ -minimum spanning tree problem. Theoretical Computer Science, 2021, 893, 159-175.	0.5	3
23	A Survey on Recent Progress in the Theory of Evolutionary Algorithms for Discrete Optimization. ACM Transactions on Evolutionary Learning, 2021, 1, 1-43.	2.7	13
24	Amplifying influence through coordinated behaviour in social networks. Social Network Analysis and Mining, 2021, 11, 111.	1.9	18
25	Analysis of the (1 + 1) EA on subclasses of linear functions under uniform and linear constraints. Theoretical Computer Science, 2020, 832, 3-19.	0.5	13
26	Design and analysis of diversity-based parent selection schemes for speeding up evolutionary multi-objective optimisation. Theoretical Computer Science, 2020, 832, 123-142.	0.5	13
27	Robust Fitting in Computer Vision: Easy or Hard?. International Journal of Computer Vision, 2020, 128, 575-587.	10.9	20
28	Runtime analysis of RLS and $(1\hat{a}\in +\hat{a}\in 1)$ EA for the dynamic weighted vertex cover problem. Theoretical Computer Science, 2020, 832, 20-41.	0.5	4
29	Evolutionary Image Transition and Painting Using Random Walks. Evolutionary Computation, 2020, 28, 643-675.	2.3	8
30	The Dynamic Travelling Thief Problem: Benchmarks and Performance of Evolutionary Algorithms. Communications in Computer and Information Science, 2020, , 220-228.	0.4	3
31	Who's in the Gang? Revealing Coordinating Communities in Social Media. , 2020, , .		9
32	Evolving diverse sets of tours for the travelling salesperson problem. , 2020, , .		19
33	Specific single- and multi-objective evolutionary algorithms for the chance-constrained knapsack problem. , 2020, , .		13
34	The node weight dependent traveling salesperson problem. , 2020, , .		4
35	Optimising Tours for the Weighted Traveling Salesperson Problem and the Traveling Thief Problem: A Structural Comparison of Solutions. Lecture Notes in Computer Science, 2020, , 346-359.	1.0	1
36	Runtime analysis of evolutionary algorithms with biased mutation for the multi-objective minimum spanning tree problem. , 2020, , .		3

#	Article	IF	CITATIONS
37	More effective randomized search heuristics for graph coloring through dynamic optimization. , 2020, , .		1
38	Using Neural Networks and Diversifying Differential Evolution for Dynamic Optimisation., 2020,,.		0
39	Human Interactive EEG-Based Evolutionary Image Animation. , 2020, , .		O
40	Maximizing Submodular or Monotone Functions Under Partition Matroid Constraints by Multi-objective Evolutionary Algorithms. Lecture Notes in Computer Science, 2020, , 588-603.	1.0	2
41	Reoptimization Time Analysis of Evolutionary Algorithms on Linear Functions Under Dynamic Uniform Constraints. Algorithmica, 2019, 81, 828-857.	1.0	15
42	Theoretical Analysis of Local Search and Simple Evolutionary Algorithms for the Generalized Travelling Salesperson Problem. Evolutionary Computation, 2019, 27, 525-558.	2.3	1
43	On the benefits of biased edge-exchange mutation for the multi-criteria spanning tree problem. , 2019, ,		3
44	Runtime analysis of evolutionary algorithms for the depth restricted (1,2)-minimum spanning tree problem. , 2019, , .		1
45	Evolutionary computation for digital art. , 2019, , .		1
46	Fast re-optimization via structural diversity. , 2019, , .		9
47	Runtime analysis of randomized search heuristics for dynamic graph coloring. , 2019, , .		9
48	Runtime analysis of the $(1+1)$ evolutionary algorithm for the chance-constrained knapsack problem. , 2019, , .		9
49	Evolving diverse TSP instances by means of novel and creative mutation operators. , 2019, , .		20
50	Improved runtime results for simple randomised search heuristics on linear functions with a uniform constraint. , 2019 , , .		5
51	Analysis of baseline evolutionary algorithms for the packing while travelling problem. , 2019, , .		2
52	Evolutionary algorithms for the chance-constrained knapsack problem. , 2019, , .		15
53	Parameterized Analysis of Multiobjective Evolutionary Algorithms and the Weighted Vertex Cover Problem. Evolutionary Computation, 2019, 27, 559-575.	2.3	7
54	A Fully Polynomial Time Approximation Scheme for Packing While Traveling. Lecture Notes in Computer Science, 2019, , 59-72.	1.0	6

#	Article	IF	CITATIONS
55	Pareto Optimization for Subset Selection with Dynamic Cost Constraints. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33, 2354-2361.	3.6	18
56	Evolutionary Computation for Multicomponent Problems: Opportunities and Future Directions. Management and Industrial Engineering, 2019, , 13-30.	0.3	15
57	Automated Algorithm Selection: Survey and Perspectives. Evolutionary Computation, 2019, 27, 3-45.	2.3	219
58	Evolutionary diversity optimization using multi-objective indicators. , 2019, , .		29
59	On the Use of Diversity Mechanisms in Dynamic Constrained Continuous Optimization. Lecture Notes in Computer Science, 2019, , 644-657.	1.0	1
60	Runtime Analysis of Evolutionary Multi-objective Algorithms Optimising the Degree and Diameter of Spanning Trees. Lecture Notes in Computer Science, 2019, , 504-515.	1.0	2
61	Runtime analysis of randomized search heuristics for the dynamic weighted vertex cover problem. , 2018, , .		5
62	Randomized greedy algorithms for covering problems. , 2018, , .		6
63	A Comparison of Constraint Handling Techniques for Dynamic Constrained Optimization Problems. , 2018, , .		11
64	On the Use of Colour-Based Segmentation in Evolutionary Image Composition. , 2018, , .		2
65	Discrepancy-based evolutionary diversity optimization. , 2018, , .		36
66	Evolutionary computation plus dynamic programming for the bi-objective travelling thief problem. , 2018, , .		16
67	Evolutionary computation for digital art. , 2018, , .		2
68	Robust Fitting in Computer Vision: Easy or Hard?. Lecture Notes in Computer Science, 2018, , 715-730.	1.0	26
69	On the Performance of Baseline Evolutionary Algorithms on the Dynamic Knapsack Problem. Lecture Notes in Computer Science, 2018, , 158-169.	1.0	13
70	A Probabilistic Tree-Based Representation for Non-convex Minimum Cost Flow Problems. Lecture Notes in Computer Science, 2018, , 69-81.	1.0	2
71	Runtime Analysis of Evolutionary Algorithms for the Knapsack Problem with Favorably Correlated Weights. Lecture Notes in Computer Science, 2018, , 141-152.	1.0	2
72	On the Use of Repair Methods in Differential Evolution for Dynamic Constrained Optimization. Lecture Notes in Computer Science, 2018, , 832-847.	1.0	9

#	Article	IF	CITATIONS
73	Ahura: A Heuristic-Based Racer for the Open Racing Car Simulator. IEEE Transactions on Games, 2017, 9, 290-304.	1.7	6
74	Expected Fitness Gains of Randomized Search Heuristics for the Traveling Salesperson Problem. Evolutionary Computation, 2017, 25, 673-705.	2.3	17
75	Analysis of the $(1+1)$ EA on Subclasses of Linear Functions under Uniform and Linear Constraints. , 2017, , .		7
76	On the Use of the Dual Formulation for Minimum Weighted Vertex Cover in Evolutionary Algorithms. , 2017, , .		8
77	Speeding up evolutionary multi-objective optimisation through diversity-based parent selection. , 2017, , .		6
78	Evolutionary image composition using feature covariance matrices., 2017,,.		12
79	The Packing While Traveling Problem. European Journal of Operational Research, 2017, 258, 424-439.	3.5	13
80	Time Complexity Analysis of Evolutionary Algorithms on Random Satisfiable k-CNF Formulas. Algorithmica, 2017, 78, 561-586.	1.0	16
81	Improved runtime analysis of RLS and $(1+1)$ EA for the dynamic vertex cover problem. , 2017, , .		4
82	Parameterized analysis of bio-inspired computing. , 2017, , .		0
83	Evolutionary Image Transition Using Random Walks. Lecture Notes in Computer Science, 2017, , 230-245.	1.0	14
84	Exact Approaches for the Travelling ThiefÂProblem. Lecture Notes in Computer Science, 2017, , 110-121.	1.0	20
85	Reoptimization times of evolutionary algorithms on linear functions under dynamic uniform constraints., 2017,,.		11
86	Scaling up Local Search for Minimum Vertex Cover in Large Graphs by Parallel Kernelization. Lecture Notes in Computer Science, 2017, , 131-143.	1.0	3
87	Fast and Effective Optimisation of Arrays of Submerged Wave Energy Converters. , 2016, , .		17
88	Feature-based algorithm selection for constrained continuous optimisation. , 2016, , .		2
89	Guaranteed Outlier Removal with Mixed Integer Linear Programs. , 2016, , .		30
90	Runtime Analysis of Evolutionary Diversity Maximization for OneMinMax., 2016,,.		15

#	Article	IF	Citations
91	On the Impact of the Renting Rate for the Unconstrained Nonlinear Knapsack Problem. , 2016, , .		12
92	Solving hard control problems in voting systems via integer programming. European Journal of Operational Research, 2016, 250, 204-213.	3.5	7
93	A Parameterised Complexity Analysis of Bi-level Optimisation with Evolutionary Algorithms . Evolutionary Computation, 2016, 24, 183-203.	2.3	14
94	Parameterized Analysis of Multi-objective Evolutionary Algorithms and the Weighted Vertex Cover Problem. Lecture Notes in Computer Science, 2016, , 729-739.	1.0	7
95	Feature-Based Diversity Optimization for Problem Instance Classification. Lecture Notes in Computer Science, 2016, , 869-879.	1.0	21
96	The Evolutionary Process of Image Transition in Conjunction with Box and Strip Mutation. Lecture Notes in Computer Science, 2016, , 261-268.	1.0	5
97	Fast Building Block Assembly by Majority Vote Crossover. , 2016, , .		26
98	Analyzing the Effects of Instance Features and Algorithm Parameters for Max–Min Ant System and the Traveling Salesperson Problem. Frontiers in Robotics and Al, 2015, 2, .	2.0	20
99	Efficient optimization of many objectives by approximation-guided evolution. European Journal of Operational Research, 2015, 243, 465-479.	3.5	24
100	On the Impact of Local Search Operators and Variable Neighbourhood Search for the Generalized Travelling Salesperson Problem. , 2015, , .		2
101	Multiplicative Approximations, Optimal Hypervolume Distributions, and the Choice of the Reference Point. Evolutionary Computation, 2015, 23, 131-159.	2.3	10
102	Runtime Analysis of Evolutionary Diversity Optimization and the Vertex Cover Problem., 2015,,.		1
103	Improved Runtime Bounds for the $(1+1)$ EA on Random 3-CNF Formulas Based on Fitness-Distance Correlation. , 2015 , , .		10
104	Maintaining 2-Approximations for the Dynamic Vertex Cover Problem Using Evolutionary Algorithms. , 2015, , .		20
105	Parameterized Complexity Analysis of Evolutionary Algorithms. , 2015, , .		0
106	Maximizing Submodular Functions under Matroid Constraints by Evolutionary Algorithms. Evolutionary Computation, 2015, 23, 543-558.	2.3	54
107	On the Performance of Different Genetic Programming Approaches for the SORTING Problem. Evolutionary Computation, 2015, 23, 583-609.	2.3	5
108	Population size matters: Rigorous runtime results for maximizing the hypervolume indicator. Theoretical Computer Science, 2015, 561, 24-36.	0.5	13

#	Article	IF	CITATIONS
109	Packing While Traveling: Mixed Integer Programming for a Class of Nonlinear Knapsack Problems. Lecture Notes in Computer Science, 2015, , 332-346.	1.0	7
110	A Feature-Based Analysis on the Impact of Set of Constraints for \$\$varepsilon \$\$ -Constrained Differential Evolution. Lecture Notes in Computer Science, 2015, , 344-355.	1.0	2
111	A Feature-Based Comparison of Evolutionary Computing Techniques for Constrained Continuous Optimisation. Lecture Notes in Computer Science, 2015, , 332-343.	1.0	1
112	Single- and multi-objective genetic programming: New runtime results for sorting. , 2014, , .		2
113	Parameterized complexity analysis of evolutionary algorithms. , 2014, , .		0
114	Parameterized Runtime Analyses of Evolutionary Algorithms for the Planar Euclidean Traveling Salesperson Problem. Evolutionary Computation, 2014, 22, 595-628.	2.3	30
115	Editorial for the Special Issue on Theoretical Foundations of Evolutionary Computation. IEEE Transactions on Evolutionary Computation, 2014, 18, 625-627.	7.5	O
116	A comprehensive benchmark set and heuristics for the traveling thief problem. , 2014, , .		76
117	A Feature-based analysis on the impact of linear constraints for $\$\#x03B5$;-constrained differential evolution. , 2014 , , .		4
118	Parameter Prediction Based on Features of Evolved Instances for Ant Colony Optimization and the Traveling Salesperson Problem. Lecture Notes in Computer Science, 2014, , 100-109.	1.0	10
119	The Max problem revisited: The importance of mutation in genetic programming. Theoretical Computer Science, 2014, 545, 94-107.	0.5	10
120	A fixed budget analysis of randomized search heuristics for the traveling salesperson problem. , 2014, , .		7
121	EVOR., 2014, , .		6
122	Runtime analysis for maximizing population diversity in single-objective optimization. , 2014, , .		11
123	Maximizing Submodular Functions under Matroid Constraints by Multi-objective Evolutionary Algorithms. Lecture Notes in Computer Science, 2014, , 922-931.	1.0	14
124	Runtime Analysis of Evolutionary Algorithms on Randomly Constructed High-Density Satisfiable 3-CNF Formulas. Lecture Notes in Computer Science, 2014, , 942-951.	1.0	8
125	On the Impact of Utility Functions in Interactive Evolutionary Multi-objective Optimization. Lecture Notes in Computer Science, 2014, , 419-430.	1.0	1
126	Weighted preferences in evolutionary multi-objective optimization. International Journal of Machine Learning and Cybernetics, 2013, 4, 139-148.	2.3	19

#	Article	IF	CITATIONS
127	Fixed-Parameter Evolutionary Algorithms and the Vertex Cover Problem. Algorithmica, 2013, 65, 754-771.	1.0	59
128	The generalized minimum spanning tree problem., 2013,,.		5
129	A novel feature-based approach to characterize algorithm performance for the traveling salesperson problem. Annals of Mathematics and Artificial Intelligence, 2013, 69, 151-182.	0.9	68
130	Fixed-parameter evolutionary algorithms for the Euclidean Traveling Salesperson problem. , 2013, , .		5
131	Parameterized complexity analysis and more effective construction methods for ACO algorithms and the euclidean traveling salesperson problem. , 2013, , .		4
132	Predicting the energy output of wind farms based on weather data: Important variables and their correlation. Renewable Energy, 2013, 50, 236-243.	4.3	77
133	A fast and effective local search algorithm for optimizing the placement of wind turbines. Renewable Energy, 2013, 51, 64-70.	4.3	88
134	More effective crossover operators for the all-pairs shortest path problem. Theoretical Computer Science, 2013, 471, 12-26.	0.5	31
135	Fast and effective multi-objective optimisation of wind turbine placement., 2013,,.		23
136	A fast approximation-guided evolutionary multi-objective algorithm. , 2013, , .		51
137	Population size matters., 2013, , .		1
138	A feature-based comparison of local search and the christofides algorithm for the travelling salesperson problem. , 2013, , .		23
139	Bioinspired computation in combinatorial optimization. , 2013, , .		9
140	Ant colony optimisation and the traveling salesperson problem. , 2013, , .		4
141	The max problem revisited. , 2012, , .		5
142	A parameterized runtime analysis of evolutionary algorithms for MAX-2-SAT., 2012,,.		4
143	Computational complexity analysis of multi-objective genetic programming. , 2012, , .		18
144	Bioinspired computation in combinatorial optimization. , 2012, , .		9

#	Article	IF	CITATIONS
145	Optimizing energy output and layout costs for large wind farms using particle swarm optimization. , 2012, , .		22
146	An adaptive data structure for evolutionary multi-objective algorithms with unbounded archives. , 2012, , .		0
147	Convergence of set-based multi-objective optimization, indicators and deteriorative cycles. Theoretical Computer Science, 2012, 456, 2-17.	0.5	15
148	Editorial to the special issue on "Theoretical Foundations of Evolutionary Computation― Theoretical Computer Science, 2012, 425, 2-3.	0.5	0
149	Theoretical analysis of two ACO approaches for the traveling salesman problem. Swarm Intelligence, 2012, 6, 1-21.	1.3	45
150	Optimising Spatial and Tonal Data for Homogeneous Diffusion Inpainting. Lecture Notes in Computer Science, 2012, , 26-37.	1.0	39
151	Experimental Supplements to the Computational Complexity Analysis of Genetic Programming for Problems Modelling Isolated Program Semantics. Lecture Notes in Computer Science, 2012, , 102-112.	1.0	5
152	Parsimony Pressure versus Multi-objective Optimization for Variable Length Representations. Lecture Notes in Computer Science, 2012, , 133-142.	1.0	10
153	A Parameterized Runtime Analysis of Simple Evolutionary Algorithms for Makespan Scheduling. Lecture Notes in Computer Science, 2012, , 52-61.	1.0	19
154	Local Search and the Traveling Salesman Problem: A Feature-Based Characterization of Problem Hardness. Lecture Notes in Computer Science, 2012, , 115-129.	1.0	19
155	Evolutionary algorithms and dynamic programming. Theoretical Computer Science, 2011, 412, 6020-6035.	0.5	17
156	Computing Minimum Cuts by Randomized Search Heuristics. Algorithmica, 2011, 59, 323-342.	1.0	25
157	Runtime analysis of the 1-ANT ant colony optimizer. Theoretical Computer Science, 2011, 412, 1629-1644.	0.5	30
158	Illustration of fairness in evolutionary multi-objective optimization. Theoretical Computer Science, 2011, 412, 1546-1556.	0.5	10
159	On the effectiveness of crossover for migration in parallel evolutionary algorithms. , 2011, , .		28
160	Computational complexity analysis of simple genetic programming on two problems modeling isolated program semantics. , 2011 , , .		26
161	PAC learning and genetic programming., 2011,,.		9
162	Foundations of evolutionary multi-objective optimization., 2011,,.		0

#	Article	IF	CITATIONS
163	Velocity Adaptation in Particle Swarm Optimization. Adaptation, Learning, and Optimization, 2011 , , $155-173$.	0.5	1
164	Computational complexity and evolutionary computation. , 2011, , .		0
165	Simple max-min ant systems and the optimization of linear pseudo-boolean functions., 2011,,.		19
166	Computational Complexity Analysis of Genetic Programming - Initial Results and Future Directions. Genetic and Evolutionary Computation, 2011, , 113-128.	1.0	5
167	Ant Colony Optimization and the minimum spanning tree problem. Theoretical Computer Science, 2010, 411, 2406-2413.	0.5	55
168	When to use bit-wise neutrality. Natural Computing, 2010, 9, 283-294.	1.8	1
169	Plateaus can be harder in multi-objective optimization. Theoretical Computer Science, 2010, 411, 854-864.	0.5	12
170	Editorial for the Special Issue on Theoretical Aspects of Evolutionary Multi-Objective Optimization. Evolutionary Computation, 2010, 18, 333-334.	2.3	1
171	Ant colony optimization and the minimum cut problem. , 2010, , .		14
172	Foundations of evolutionary multi-objective optimization. , 2010, , .		0
173	A few ants are enough. , 2010, , .		36
174	Approximating Covering Problems by Randomized Search Heuristics Using Multi-Objective Models. Evolutionary Computation, 2010, 18, 617-633.	2.3	90
175	Computational complexity and evolutionary computation. , 2010, , .		O
176	Set-based multi-objective optimization, indicators, and deteriorative cycles. , 2010, , .		5
177	Approximating Pareto-Optimal Sets Using Diversity Strategies in Evolutionary Multi-Objective Optimization. Studies in Computational Intelligence, 2010, , 23-44.	0.7	6
178	Theoretical Properties of Two ACO Approaches for the Traveling Salesman Problem. Lecture Notes in Computer Science, 2010, , 324-335.	1.0	8
179	Optimal Fixed and Adaptive Mutation Rates for the LeadingOnes Problem. , 2010, , 1-10.		54
180	More Effective Crossover Operators for the All-Pairs Shortest Path Problem. , 2010, , 184-193.		3

#	Article	IF	Citations
181	Fixed Parameter Evolutionary Algorithms and Maximum Leaf Spanning Trees: A Matter of Mutation. , 2010, , 204-213.		15
182	How Crossover Speeds Up Evolutionary Algorithms for the Multi-criteria All-Pairs-Shortest-Path Problem. , 2010, , 667-676.		13
183	Bioinspired Computation in Combinatorial Optimization. Natural Computing Series, 2010, , .	2.2	148
184	Combinatorial Optimization and Computational Complexity. Natural Computing Series, 2010, , 9-19.	2.2	25
185	Evolving Fuzzy Rules: Evaluation of a New Approach. Lecture Notes in Computer Science, 2010, , 250-259.	1.0	0
186	Theoretical analysis of rank-based mutation - combining exploration and exploitation. , 2009, , .		26
187	Computational Complexity of AntÂColonyÂOptimization and Its HybridizationÂwithÂLocalÂSearch. Studies in Computational Intelligence, 2009, , 91-120.	0.7	15
188	Fixed-parameter evolutionary algorithms and the vertex cover problem. , 2009, , .		10
189	Multiplicative approximations and the hypervolume indicator. , 2009, , .		38
190	Analyses of Simple Hybrid Algorithms for the Vertex Cover Problem. Evolutionary Computation, 2009, 17, 3-19.	2.3	37
191	Additive approximations of pareto-optimal sets by evolutionary multi-objective algorithms. , 2009, , .		4
192	Computing single source shortest paths using single-objective fitness., 2009,,.		27
193	Evolutionary algorithms and dynamic programming. , 2009, , .		7
194	Theoretical analysis of fitness-proportional selection., 2009,,.		58
195	On the Effects of Adding Objectives to Plateau Functions. IEEE Transactions on Evolutionary Computation, 2009, 13, 591-603.	7.5	69
196	Runtime Analysis of a Simple Ant Colony Optimization Algorithm. Algorithmica, 2009, 54, 243.	1.0	78
197	Comparison of simple diversity mechanisms on plateau functions. Theoretical Computer Science, 2009, 410, 2455-2462.	0.5	16
198	Analysis of different MMAS ACO algorithms onÂunimodal functions and plateaus. Swarm Intelligence, 2009, 3, 35-68.	1.3	78

#	Article	IF	CITATIONS
199	Particle Swarm Optimization with Velocity Adaptation. , 2009, , .		10
200	Expected runtimes of evolutionary algorithms for the Eulerian cycle problem. Computers and Operations Research, 2008, 35, 2750-2759.	2.4	40
201	Analyzing Hypervolume Indicator Based Algorithms. Lecture Notes in Computer Science, 2008, , 651-660.	1.0	47
202	When to use bit-wise neutrality. , 2008, , .		0
203	Using fast matrix multiplication in bio-inspired computation for complex optimization problems. , 2008, , .		0
204	Rigorous analyses of fitness-proportional selection for optimizing linear functions. , 2008, , .		46
205	Computing minimum cuts by randomized search heuristics. , 2008, , .		9
206	Benefits and drawbacks for the use of epsilon-dominance in evolutionary multi-objective optimization. , 2008, , .		29
207	Rigorous Analyses for the Combination of AntÂColonyÂOptimization and Local Search. Lecture Notes in Computer Science, 2008, , 132-143.	1.0	30
208	Learning Fuzzy Rules with Evolutionary Algorithms â€" An Analytic Approach. Lecture Notes in Computer Science, 2008, , 1051-1060.	1.0	7
209	Approximating Minimum Multicuts by Evolutionary Multi-objective Algorithms. Lecture Notes in Computer Science, 2008, , 72-81.	1.0	16
210	Runtime Analyses for Using Fairness in Evolutionary Multi-Objective Optimization. Lecture Notes in Computer Science, 2008, , 671-680.	1.0	1
211	Multi-objective Problems in Terms of Relational Algebra. , 2008, , 84-98.		O
212	Approximating covering problems by randomized search heuristics using multi-objective models., 2007,,.		29
213	Do additional objectives make a problem harder?., 2007,,.		65
214	Rigorous analyses of simple diversity mechanisms. , 2007, , .		21
215	On the runtime analysis of the 1-ANT ACO algorithm. , 2007, , .		35
216	Speeding Up Evolutionary Algorithms through Asymmetric Mutation Operators. Evolutionary Computation, 2007, 15, 401-410.	2.3	39

#	Article	IF	Citations
217	Computational complexity and evolutionary computation. , 2007, , .		3
218	Plateaus can be harder in multi-objective optimization., 2007,,.		3
219	A rigorous view on neutrality. , 2007, , .		11
220	On improving approximate solutions by evolutionary algorithms. , 2007, , .		2
221	Expected runtimes of a simple evolutionary algorithm for the multi-objective minimum spanning tree problem. European Journal of Operational Research, 2007, 181, 1620-1629.	3.5	67
222	Randomized local search, evolutionary algorithms, and the minimum spanning tree problem. Theoretical Computer Science, 2007, 378, 32-40.	0.5	192
223	Comparing Variants of MMAS ACO Algorithms on Pseudo-Boolean Functions. , 2007, , 61-75.		9
224	Minimum spanning trees made easier via multi-objective optimization. Natural Computing, 2006, 5, 305-319.	1.8	111
225	Speeding up Approximation Algorithms for NP-Hard Spanning Forest Problems by Multi-objective Optimization. Lecture Notes in Computer Science, 2006, , 745-756.	1.0	2
226	Speeding Up Evolutionary Algorithms Through Restricted Mutation Operators. Lecture Notes in Computer Science, 2006, , 978-987.	1.0	16
227	Relational Implementation of Simple Parallel Evolutionary Algorithms. Lecture Notes in Computer Science, 2006, , 161-172.	1.0	1
228	Minimum spanning trees made easier via multi-objective optimization. , 2005, , .		21
229	RelView – An OBDD-Based Computer Algebra System for Relations. Lecture Notes in Computer Science, 2005, , 40-51.	1.0	37
230	Randomized Local Search, Evolutionary Algorithms, and the Minimum Spanning Tree Problem. Lecture Notes in Computer Science, 2004, , 713-724.	1.0	32