List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3698568/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Automated Algorithm Selection: Survey and Perspectives. Evolutionary Computation, 2019, 27, 3-45.	3.0	219
2	Randomized local search, evolutionary algorithms, and the minimum spanning tree problem. Theoretical Computer Science, 2007, 378, 32-40.	0.9	192
3	Bioinspired Computation in Combinatorial Optimization. Natural Computing Series, 2010, , .	2.2	148
4	Minimum spanning trees made easier via multi-objective optimization. Natural Computing, 2006, 5, 305-319.	3.0	111
5	Approximating Covering Problems by Randomized Search Heuristics Using Multi-Objective Models. Evolutionary Computation, 2010, 18, 617-633.	3.0	90
6	A fast and effective local search algorithm for optimizing the placement of wind turbines. Renewable Energy, 2013, 51, 64-70.	8.9	88
7	Runtime Analysis of a Simple Ant Colony Optimization Algorithm. Algorithmica, 2009, 54, 243.	1.3	78
8	Analysis of different MMAS ACO algorithms onÂunimodal functions and plateaus. Swarm Intelligence, 2009, 3, 35-68.	2.2	78
9	Predicting the energy output of wind farms based on weather data: Important variables and their correlation. Renewable Energy, 2013, 50, 236-243.	8.9	77
10	A comprehensive benchmark set and heuristics for the traveling thief problem. , 2014, , .		76
11	On the Effects of Adding Objectives to Plateau Functions. IEEE Transactions on Evolutionary Computation, 2009, 13, 591-603.	10.0	69
12	A novel feature-based approach to characterize algorithm performance for the traveling salesperson problem. Annals of Mathematics and Artificial Intelligence, 2013, 69, 151-182.	1.3	68
13	Expected runtimes of a simple evolutionary algorithm for the multi-objective minimum spanning tree problem. European Journal of Operational Research, 2007, 181, 1620-1629.	5.7	67
14	Do additional objectives make a problem harder?. , 2007, , .		65
15	Fixed-Parameter Evolutionary Algorithms and the Vertex Cover Problem. Algorithmica, 2013, 65, 754-771.	1.3	59
16	Theoretical analysis of fitness-proportional selection. , 2009, , .		58
17	Ant Colony Optimization and the minimum spanning tree problem. Theoretical Computer Science, 2010, 411, 2406-2413.	0.9	55
18	Maximizing Submodular Functions under Matroid Constraints by Evolutionary Algorithms. Evolutionary Computation, 2015, 23, 543-558.	3.0	54

#	Article	IF	CITATIONS
19	Optimal Fixed and Adaptive Mutation Rates for the LeadingOnes Problem. , 2010, , 1-10.		54
20	A fast approximation-guided evolutionary multi-objective algorithm. , 2013, , .		51
21	Analyzing Hypervolume Indicator Based Algorithms. Lecture Notes in Computer Science, 2008, , 651-660.	1.3	47
22	Rigorous analyses of fitness-proportional selection for optimizing linear functions. , 2008, , .		46
23	Theoretical analysis of two ACO approaches for the traveling salesman problem. Swarm Intelligence, 2012, 6, 1-21.	2.2	45
24	Expected runtimes of evolutionary algorithms for the Eulerian cycle problem. Computers and Operations Research, 2008, 35, 2750-2759.	4.0	40
25	Speeding Up Evolutionary Algorithms through Asymmetric Mutation Operators. Evolutionary Computation, 2007, 15, 401-410.	3.0	39
26	Optimising Spatial and Tonal Data for Homogeneous Diffusion Inpainting. Lecture Notes in Computer Science, 2012, , 26-37.	1.3	39
27	Multiplicative approximations and the hypervolume indicator. , 2009, , .		38
28	Analyses of Simple Hybrid Algorithms for the Vertex Cover Problem. Evolutionary Computation, 2009, 17, 3-19.	3.0	37
29	RelView – An OBDD-Based Computer Algebra System for Relations. Lecture Notes in Computer Science, 2005, , 40-51.	1.3	37
30	A few ants are enough. , 2010, , .		36
31	Discrepancy-based evolutionary diversity optimization. , 2018, , .		36
32	On the runtime analysis of the 1-ANT ACO algorithm. , 2007, , .		35
33	Randomized Local Search, Evolutionary Algorithms, and the Minimum Spanning Tree Problem. Lecture Notes in Computer Science, 2004, , 713-724.	1.3	32
34	More effective crossover operators for the all-pairs shortest path problem. Theoretical Computer Science, 2013, 471, 12-26.	0.9	31
35	Runtime analysis of the 1-ANT ant colony optimizer. Theoretical Computer Science, 2011, 412, 1629-1644.	0.9	30
36	Parameterized Runtime Analyses of Evolutionary Algorithms for the Planar Euclidean Traveling Salesperson Problem. Evolutionary Computation, 2014, 22, 595-628.	3.0	30

#	Article	IF	CITATIONS
37	Guaranteed Outlier Removal with Mixed Integer Linear Programs. , 2016, , .		30
38	Rigorous Analyses for the Combination of AntÂColonyÂOptimization and Local Search. Lecture Notes in Computer Science, 2008, , 132-143.	1.3	30
39	Approximating covering problems by randomized search heuristics using multi-objective models. , 2007, , .		29
40	Benefits and drawbacks for the use of epsilon-dominance in evolutionary multi-objective optimization. , 2008, , .		29
41	Evolutionary diversity optimization using multi-objective indicators. , 2019, , .		29
42	On the effectiveness of crossover for migration in parallel evolutionary algorithms. , 2011, , .		28
43	Computing single source shortest paths using single-objective fitness. , 2009, , .		27
44	Theoretical analysis of rank-based mutation - combining exploration and exploitation. , 2009, , .		26
45	Computational complexity analysis of simple genetic programming on two problems modeling isolated program semantics. , 2011, , .		26
46	Robust Fitting in Computer Vision: Easy or Hard?. Lecture Notes in Computer Science, 2018, , 715-730.	1.3	26
47	Fast Building Block Assembly by Majority Vote Crossover. , 2016, , .		26
48	Computing Minimum Cuts by Randomized Search Heuristics. Algorithmica, 2011, 59, 323-342.	1.3	25
49	Combinatorial Optimization and Computational Complexity. Natural Computing Series, 2010, , 9-19.	2.2	25
50	Efficient optimization of many objectives by approximation-guided evolution. European Journal of Operational Research, 2015, 243, 465-479.	5.7	24
51	Fast and effective multi-objective optimisation of wind turbine placement. , 2013, , .		23
52	A feature-based comparison of local search and the christofides algorithm for the travelling salesperson problem. , 2013, , .		23
53	Optimizing energy output and layout costs for large wind farms using particle swarm optimization. , 2012, , .		22
54	Minimum spanning trees made easier via multi-objective optimization. , 2005, , .		21

#	Article	IF	CITATIONS
55	Rigorous analyses of simple diversity mechanisms. , 2007, , .		21
56	Feature-Based Diversity Optimization for Problem Instance Classification. Lecture Notes in Computer Science, 2016, , 869-879.	1.3	21
57	Analyzing the Effects of Instance Features and Algorithm Parameters for Max–Min Ant System and the Traveling Salesperson Problem. Frontiers in Robotics and Al, 2015, 2, .	3.2	20
58	Maintaining 2-Approximations for the Dynamic Vertex Cover Problem Using Evolutionary Algorithms. , 2015, , .		20
59	Evolving diverse TSP instances by means of novel and creative mutation operators. , 2019, , .		20
60	Robust Fitting in Computer Vision: Easy or Hard?. International Journal of Computer Vision, 2020, 128, 575-587.	15.6	20
61	Exact Approaches for the Travelling ThiefÂProblem. Lecture Notes in Computer Science, 2017, , 110-121.	1.3	20
62	Simple max-min ant systems and the optimization of linear pseudo-boolean functions. , 2011, , .		19
63	Weighted preferences in evolutionary multi-objective optimization. International Journal of Machine Learning and Cybernetics, 2013, 4, 139-148.	3.6	19
64	A Parameterized Runtime Analysis of Simple Evolutionary Algorithms for Makespan Scheduling. Lecture Notes in Computer Science, 2012, , 52-61.	1.3	19
65	Local Search and the Traveling Salesman Problem: A Feature-Based Characterization of Problem Hardness. Lecture Notes in Computer Science, 2012, , 115-129.	1.3	19
66	Evolving diverse sets of tours for the travelling salesperson problem. , 2020, , .		19
67	Computational complexity analysis of multi-objective genetic programming. , 2012, , .		18
68	Pareto Optimization for Subset Selection with Dynamic Cost Constraints. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33, 2354-2361.	4.9	18
69	Feature-Based Diversity Optimization for Problem Instance Classification. Evolutionary Computation, 2021, 29, 107-128.	3.0	18
70	Amplifying influence through coordinated behaviour in social networks. Social Network Analysis and Mining, 2021, 11, 111.	2.8	18
71	Evolutionary algorithms and dynamic programming. Theoretical Computer Science, 2011, 412, 6020-6035.	0.9	17
72	Fast and Effective Optimisation of Arrays of Submerged Wave Energy Converters. , 2016, , .		17

Fast and Effective Optimisation of Arrays of Submerged Wave Energy Converters. , 2016, , . 72

FRANK NEUMANN

#	Article	IF	CITATIONS
73	Expected Fitness Gains of Randomized Search Heuristics for the Traveling Salesperson Problem. Evolutionary Computation, 2017, 25, 673-705.	3.0	17
74	Comparison of simple diversity mechanisms on plateau functions. Theoretical Computer Science, 2009, 410, 2455-2462.	0.9	16
75	Time Complexity Analysis of Evolutionary Algorithms on Random Satisfiable k-CNF Formulas. Algorithmica, 2017, 78, 561-586.	1.3	16
76	Evolutionary computation plus dynamic programming for the bi-objective travelling thief problem. , 2018, , .		16
77	Speeding Up Evolutionary Algorithms Through Restricted Mutation Operators. Lecture Notes in Computer Science, 2006, , 978-987.	1.3	16
78	Approximating Minimum Multicuts by Evolutionary Multi-objective Algorithms. Lecture Notes in Computer Science, 2008, , 72-81.	1.3	16
79	Computational Complexity of AntÂColonyÂOptimization and Its HybridizationÂwithÂLocalÂSearch. Studies in Computational Intelligence, 2009, , 91-120.	0.9	15
80	Convergence of set-based multi-objective optimization, indicators and deteriorative cycles. Theoretical Computer Science, 2012, 456, 2-17.	0.9	15
81	Runtime Analysis of Evolutionary Diversity Maximization for OneMinMax. , 2016, , .		15
82	Reoptimization Time Analysis of Evolutionary Algorithms on Linear Functions Under Dynamic Uniform Constraints. Algorithmica, 2019, 81, 828-857.	1.3	15
83	Evolutionary algorithms for the chance-constrained knapsack problem. , 2019, , .		15
84	Evolutionary Computation for Multicomponent Problems: Opportunities and Future Directions. Management and Industrial Engineering, 2019, , 13-30.	0.4	15
85	Diversifying greedy sampling and evolutionary diversity optimisation for constrained monotone submodular functions. , 2021, , .		15
86	Fixed Parameter Evolutionary Algorithms and Maximum Leaf Spanning Trees: A Matter of Mutation. , 2010, , 204-213.		15
87	Ant colony optimization and the minimum cut problem. , 2010, , .		14
88	A Parameterised Complexity Analysis of Bi-level Optimisation with Evolutionary Algorithms . Evolutionary Computation, 2016, 24, 183-203.	3.0	14
89	Entropy-based evolutionary diversity optimisation for the traveling salesperson problem. , 2021, , .		14
90	Evolutionary diversity optimization and the minimum spanning tree problem. , 2021, , .		14

6

#	Article	IF	CITATIONS
91	Maximizing Submodular Functions under Matroid Constraints by Multi-objective Evolutionary Algorithms. Lecture Notes in Computer Science, 2014, , 922-931.	1.3	14
92	Evolutionary Image Transition Using Random Walks. Lecture Notes in Computer Science, 2017, , 230-245.	1.3	14
93	Population size matters: Rigorous runtime results for maximizing the hypervolume indicator. Theoretical Computer Science, 2015, 561, 24-36.	0.9	13
94	The Packing While Traveling Problem. European Journal of Operational Research, 2017, 258, 424-439.	5.7	13
95	Analysis of the (1 + 1) EA on subclasses of linear functions under uniform and linear constraints. Theoretical Computer Science, 2020, 832, 3-19.	0.9	13
96	Design and analysis of diversity-based parent selection schemes for speeding up evolutionary multi-objective optimisation. Theoretical Computer Science, 2020, 832, 123-142.	0.9	13
97	Analysis of evolutionary diversity optimisation for permutation problems. , 2021, , .		13
98	On the Performance of Baseline Evolutionary Algorithms on the Dynamic Knapsack Problem. Lecture Notes in Computer Science, 2018, , 158-169.	1.3	13
99	How Crossover Speeds Up Evolutionary Algorithms for the Multi-criteria All-Pairs-Shortest-Path Problem. , 2010, , 667-676.		13
100	Specific single- and multi-objective evolutionary algorithms for the chance-constrained knapsack problem. , 2020, , .		13
101	A Survey on Recent Progress in the Theory of Evolutionary Algorithms for Discrete Optimization. ACM Transactions on Evolutionary Learning, 2021, 1, 1-43.	3.5	13
102	Plateaus can be harder in multi-objective optimization. Theoretical Computer Science, 2010, 411, 854-864.	0.9	12
103	On the Impact of the Renting Rate for the Unconstrained Nonlinear Knapsack Problem. , 2016, , .		12
104	Evolutionary image composition using feature covariance matrices. , 2017, , .		12
105	On the use of quality diversity algorithms for the traveling thief problem. , 2022, , .		12
106	A rigorous view on neutrality. , 2007, , .		11
107	Runtime analysis for maximizing population diversity in single-objective optimization. , 2014, , .		11
108	A Comparison of Constraint Handling Techniques for Dynamic Constrained Optimization Problems. , 2018, , .		11

#	Article	IF	CITATIONS
109	Breeding diverse packings for the knapsack problem by means of diversity-tailored evolutionary algorithms. , 2021, , .		11
110	Pareto optimization for subset selection with dynamic cost constraints. Artificial Intelligence, 2022, 302, 103597.	5.8	11
111	Reoptimization times of evolutionary algorithms on linear functions under dynamic uniform constraints. , 2017, , .		11
112	Fixed-parameter evolutionary algorithms and the vertex cover problem. , 2009, , .		10
113	Particle Swarm Optimization with Velocity Adaptation. , 2009, , .		10
114	Illustration of fairness in evolutionary multi-objective optimization. Theoretical Computer Science, 2011, 412, 1546-1556.	0.9	10
115	Parameter Prediction Based on Features of Evolved Instances for Ant Colony Optimization and the Traveling Salesperson Problem. Lecture Notes in Computer Science, 2014, , 100-109.	1.3	10
116	The Max problem revisited: The importance of mutation in genetic programming. Theoretical Computer Science, 2014, 545, 94-107.	0.9	10
117	Multiplicative Approximations, Optimal Hypervolume Distributions, and the Choice of the Reference Point. Evolutionary Computation, 2015, 23, 131-159.	3.0	10
118	Improved Runtime Bounds for the (1+1) EA on Random 3-CNF Formulas Based on Fitness-Distance Correlation. , 2015, , .		10
119	Parsimony Pressure versus Multi-objective Optimization for Variable Length Representations. Lecture Notes in Computer Science, 2012, , 133-142.	1.3	10
120	Computing minimum cuts by randomized search heuristics. , 2008, , .		9
121	PAC learning and genetic programming. , 2011, , .		9
122	Bioinspired computation in combinatorial optimization. , 2012, , .		9
123	Bioinspired computation in combinatorial optimization. , 2013, , .		9
124	Fast re-optimization via structural diversity. , 2019, , .		9
125	Runtime analysis of randomized search heuristics for dynamic graph coloring. , 2019, , .		9
126	Runtime analysis of the $(1 + 1)$ evolutionary algorithm for the chance-constrained knapsack problem. , 2019		9

#	Article	IF	CITATIONS
127	Runtime analysis of RLS and the (1+1) EA for the chance-constrained knapsack problem with correlated uniform weights. , 2021, , .		9
128	Comparing Variants of MMAS ACO Algorithms on Pseudo-Boolean Functions. , 2007, , 61-75.		9
129	Who's in the Gang? Revealing Coordinating Communities in Social Media. , 2020, , .		9
130	On the Use of Repair Methods in Differential Evolution for Dynamic Constrained Optimization. Lecture Notes in Computer Science, 2018, , 832-847.	1.3	9
131	On the Use of the Dual Formulation for Minimum Weighted Vertex Cover in Evolutionary Algorithms. , 2017, , .		8
132	Evolutionary Image Transition and Painting Using Random Walks. Evolutionary Computation, 2020, 28, 643-675.	3.0	8
133	Runtime Analysis of Evolutionary Algorithms on Randomly Constructed High-Density Satisfiable 3-CNF Formulas. Lecture Notes in Computer Science, 2014, , 942-951.	1.3	8
134	Theoretical Properties of Two ACO Approaches for the Traveling Salesman Problem. Lecture Notes in Computer Science, 2010, , 324-335.	1.3	8
135	Evolutionary algorithms and dynamic programming. , 2009, , .		7
136	A fixed budget analysis of randomized search heuristics for the traveling salesperson problem. , 2014, ,		7
137	Solving hard control problems in voting systems via integer programming. European Journal of Operational Research, 2016, 250, 204-213.	5.7	7
138	Analysis of the (1+1) EA on Subclasses of Linear Functions under Uniform and Linear Constraints. , 2017, , .		7
139	Parameterized Analysis of Multiobjective Evolutionary Algorithms and the Weighted Vertex Cover Problem. Evolutionary Computation, 2019, 27, 559-575.	3.0	7
140	Packing While Traveling: Mixed Integer Programming for a Class of Nonlinear Knapsack Problems. Lecture Notes in Computer Science, 2015, , 332-346.	1.3	7
141	Parameterized Analysis of Multi-objective Evolutionary Algorithms and the Weighted Vertex Cover Problem. Lecture Notes in Computer Science, 2016, , 729-739.	1.3	7
142	Learning Fuzzy Rules with Evolutionary Algorithms — An Analytic Approach. Lecture Notes in Computer Science, 2008, , 1051-1060.	1.3	7
143	EVOR., 2014,,.		6
144	Ahura: A Heuristic-Based Racer for the Open Racing Car Simulator. IEEE Transactions on Games, 2017, 9, 290-304.	1.4	6

FRANK NEUMANN

#	Article	IF	CITATIONS
145	Speeding up evolutionary multi-objective optimisation through diversity-based parent selection. , 2017, , ,		6
146	Randomized greedy algorithms for covering problems. , 2018, , .		6
147	A Fully Polynomial Time Approximation Scheme for Packing While Traveling. Lecture Notes in Computer Science, 2019, , 59-72.	1.3	6
148	Computing diverse sets of high quality TSP tours by EAX-based evolutionary diversity optimisation. , 2021, , .		6
149	Approximating Pareto-Optimal Sets Using Diversity Strategies in Evolutionary Multi-Objective Optimization. Studies in Computational Intelligence, 2010, , 23-44.	0.9	6
150	Coevolutionary Pareto diversity optimization. , 2022, , .		6
151	Set-based multi-objective optimization, indicators, and deteriorative cycles. , 2010, , .		5
152	The max problem revisited. , 2012, , .		5
153	The generalized minimum spanning tree problem. , 2013, , .		5
154	Fixed-parameter evolutionary algorithms for the Euclidean Traveling Salesperson problem. , 2013, , .		5
155	On the Performance of Different Genetic Programming Approaches for the SORTING Problem. Evolutionary Computation, 2015, 23, 583-609.	3.0	5
156	Runtime analysis of randomized search heuristics for the dynamic weighted vertex cover problem. , 2018, , .		5
157	Improved runtime results for simple randomised search heuristics on linear functions with a uniform constraint. , 2019, , .		5
158	Runtime Performances of Randomized Search Heuristics for the Dynamic Weighted Vertex Cover Problem. Algorithmica, 2021, 83, 906-939.	1.3	5
159	Computational Complexity Analysis of Genetic Programming - Initial Results and Future Directions. Genetic and Evolutionary Computation, 2011, , 113-128.	1.0	5
160	The Evolutionary Process of Image Transition in Conjunction with Box and Strip Mutation. Lecture Notes in Computer Science, 2016, , 261-268.	1.3	5
161	Experimental Supplements to the Computational Complexity Analysis of Genetic Programming for Problems Modelling Isolated Program Semantics. Lecture Notes in Computer Science, 2012, , 102-112.	1.3	5
162	Additive approximations of pareto-optimal sets by evolutionary multi-objective algorithms. , 2009, , .		4

Additive approximations of pareto-optimal sets by evolutionary multi-objective algorithms. , 2009, , . 162

#	Article	IF	CITATIONS
163	A parameterized runtime analysis of evolutionary algorithms for MAX-2-SAT. , 2012, , .		4
164	Parameterized complexity analysis and more effective construction methods for ACO algorithms and the euclidean traveling salesperson problem. , 2013, , .		4
165	Ant colony optimisation and the traveling salesperson problem. , 2013, , .		4
166	A Feature-based analysis on the impact of linear constraints for ε-constrained differential evolution. , 2014, , .		4
167	Improved runtime analysis of RLS and (1+1) EA for the dynamic vertex cover problem. , 2017, , .		4
168	Runtime analysis of RLS and (1 + 1) EA for the dynamic weighted vertex cover problem. Theoretical Computer Science, 2020, 832, 20-41.	0.9	4
169	The node weight dependent traveling salesperson problem. , 2020, , .		4
170	Single- and multi-objective evolutionary algorithms for the knapsack problem with dynamically changing constraints. Theoretical Computer Science, 2022, 924, 129-147.	0.9	4
171	Computational complexity and evolutionary computation. , 2007, , .		3
172	Plateaus can be harder in multi-objective optimization. , 2007, , .		3
173	On the benefits of biased edge-exchange mutation for the multi-criteria spanning tree problem. , 2019, , ·		3
174	Time complexity analysis of evolutionary algorithms for 2-hop (1,2)-minimum spanning tree problem. Theoretical Computer Science, 2021, 893, 159-175.	0.9	3
175	The Dynamic Travelling Thief Problem: Benchmarks and Performance of Evolutionary Algorithms. Communications in Computer and Information Science, 2020, , 220-228.	0.5	3
176	More Effective Crossover Operators for the All-Pairs Shortest Path Problem. , 2010, , 184-193.		3
177	Scaling up Local Search for Minimum Vertex Cover in Large Graphs by Parallel Kernelization. Lecture Notes in Computer Science, 2017, , 131-143.	1.3	3
178	Runtime analysis of evolutionary algorithms with biased mutation for the multi-objective minimum spanning tree problem. , 2020, , .		3
179	On improving approximate solutions by evolutionary algorithms. , 2007, , .		2
180	Single- and multi-objective genetic programming: New runtime results for sorting. , 2014, , .		2

FRANK NEUMANN

1

#	Article	IF	CITATIONS
181	On the Impact of Local Search Operators and Variable Neighbourhood Search for the Generalized Travelling Salesperson Problem. , 2015, , .		2
182	Feature-based algorithm selection for constrained continuous optimisation. , 2016, , .		2
183	On the Use of Colour-Based Segmentation in Evolutionary Image Composition. , 2018, , .		2
184	Evolutionary computation for digital art. , 2018, , .		2
185	Analysis of baseline evolutionary algorithms for the packing while travelling problem. , 2019, , .		2
186	Improved Runtime Results for Simple Randomised Search Heuristics on Linear Functions with a Uniform Constraint. Algorithmica, 2021, 83, 3209-3237.	1.3	2
187	Time Complexity Analysis of Randomized Search Heuristics for the Dynamic Graph Coloring Problem. Algorithmica, 2021, 83, 3148-3179.	1.3	2
188	Speeding up Approximation Algorithms for NP-Hard Spanning Forest Problems by Multi-objective Optimization. Lecture Notes in Computer Science, 2006, , 745-756.	1.3	2
189	A Probabilistic Tree-Based Representation for Non-convex Minimum Cost Flow Problems. Lecture Notes in Computer Science, 2018, , 69-81.	1.3	2
190	A Feature-Based Analysis on the Impact of Set of Constraints for \$\$varepsilon \$\$ -Constrained Differential Evolution. Lecture Notes in Computer Science, 2015, , 344-355.	1.3	2
191	Runtime Analysis of Evolutionary Algorithms for the Knapsack Problem with Favorably Correlated Weights. Lecture Notes in Computer Science, 2018, , 141-152.	1.3	2
192	Runtime Analysis of Evolutionary Multi-objective Algorithms Optimising the Degree and Diameter of Spanning Trees. Lecture Notes in Computer Science, 2019, , 504-515.	1.3	2
193	Maximizing Submodular or Monotone Functions Under Partition Matroid Constraints by Multi-objective Evolutionary Algorithms. Lecture Notes in Computer Science, 2020, , 588-603.	1.3	2
194	When to use bit-wise neutrality. Natural Computing, 2010, 9, 283-294.	3.0	1
195	Editorial for the Special Issue on Theoretical Aspects of Evolutionary Multi-Objective Optimization. Evolutionary Computation, 2010, 18, 333-334.	3.0	1
196	Velocity Adaptation in Particle Swarm Optimization. Adaptation, Learning, and Optimization, 2011, , 155-173.	0.6	1
197	Population size matters. , 2013, , .		1

Runtime Analysis of Evolutionary Diversity Optimization and the Vertex Cover Problem. , 2015, , .

#	Article	IF	CITATIONS
199	Theoretical Analysis of Local Search and Simple Evolutionary Algorithms for the Generalized Travelling Salesperson Problem. Evolutionary Computation, 2019, 27, 525-558.	3.0	1
200	Runtime analysis of evolutionary algorithms for the depth restricted (1,2)-minimum spanning tree problem. , 2019, , .		1
201	Evolutionary computation for digital art. , 2019, , .		1
202	Heuristic Strategies for Solving Complex Interacting Large-Scale Stockpile Blending Problems. , 2021, ,		1
203	On the Impact of Utility Functions in Interactive Evolutionary Multi-objective Optimization. Lecture Notes in Computer Science, 2014, , 419-430.	1.3	1
204	Relational Implementation of Simple Parallel Evolutionary Algorithms. Lecture Notes in Computer Science, 2006, , 161-172.	1.3	1
205	Runtime Analyses for Using Fairness in Evolutionary Multi-Objective Optimization. Lecture Notes in Computer Science, 2008, , 671-680.	1.3	1
206	A Feature-Based Comparison of Evolutionary Computing Techniques for Constrained Continuous Optimisation. Lecture Notes in Computer Science, 2015, , 332-343.	1.3	1
207	On the Use of Diversity Mechanisms in Dynamic Constrained Continuous Optimization. Lecture Notes in Computer Science, 2019, , 644-657.	1.3	1
208	Optimising Tours for the Weighted Traveling Salesperson Problem and the Traveling Thief Problem: A Structural Comparison of Solutions. Lecture Notes in Computer Science, 2020, , 346-359.	1.3	1
209	More effective randomized search heuristics for graph coloring through dynamic optimization. , 2020, , .		1
210	Run-of-mine stockyard recovery scheduling and optimisation for multiple reclaimers. , 2022, , .		1
211	Niching-based evolutionary diversity optimization for the traveling salesperson problem. , 2022, , .		1
212	When to use bit-wise neutrality. , 2008, , .		0
213	Using fast matrix multiplication in bio-inspired computation for complex optimization problems. , 2008, , .		0
214	Foundations of evolutionary multi-objective optimization. , 2010, , .		0
215	Computational complexity and evolutionary computation. , 2010, , .		0
216	Foundations of evolutionary multi-objective optimization. , 2011, , .		0

#	Article	IF	CITATIONS
217	Computational complexity and evolutionary computation. , 2011, , .		0
218	An adaptive data structure for evolutionary multi-objective algorithms with unbounded archives. , 2012, , .		0
219	Editorial to the special issue on "Theoretical Foundations of Evolutionary Computation― Theoretical Computer Science, 2012, 425, 2-3.	0.9	0
220	Parameterized complexity analysis of evolutionary algorithms. , 2014, , .		0
221	Editorial for the Special Issue on Theoretical Foundations of Evolutionary Computation. IEEE Transactions on Evolutionary Computation, 2014, 18, 625-627.	10.0	0
222	Parameterized Complexity Analysis of Evolutionary Algorithms. , 2015, , .		0
223	Parameterized analysis of bio-inspired computing. , 2017, , .		0
224	Solving Non-uniform Planted and Filtered Random SAT Formulas Greedily. Lecture Notes in Computer Science, 2021, , 188-206.	1.3	0
225	Modelling and optimization of run-of-mine stockpile recovery. , 2021, , .		0
226	Evolutionary submodular optimisation. , 2021, , .		0
227	Evolving Fuzzy Rules: Evaluation of a New Approach. Lecture Notes in Computer Science, 2010, , 250-259.	1.3	0
228	Using Neural Networks and Diversifying Differential Evolution for Dynamic Optimisation. , 2020, , .		0
229	Human Interactive EEG-Based Evolutionary Image Animation. , 2020, , .		0
230	Multi-objective Problems in Terms of Relational Algebra. , 2008, , 84-98.		0