Ulrich Bickel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3698542/publications.pdf

Version: 2024-02-01

257450 155660 4,689 59 24 55 citations h-index g-index papers 61 61 61 5327 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	A Semi-Physiological Three-Compartment Model Describes Brain Uptake Clearance and Efflux of Sucrose and Mannitol after IV Injection in Awake Mice. Pharmaceutical Research, 2022, 39, 251.	3.5	1
2	In-Vivo and Ex-Vivo Brain Uptake Studies of Peptidomimetic Neurolysin Activators in Healthy and Stroke Animals. Pharmaceutical Research, 2022, 39, 1587-1598.	3.5	6
3	Enrichment of the erythrocyte miR-451a in brain extracellular vesicles following impairment of the blood-brain barrier. Neuroscience Letters, 2021, 751, 135829.	2.1	11
4	Comparative assessment of in vitro BBB tight junction integrity following exposure to cigarette smoke and e-cigarette vapor: a quantitative evaluation of the protective effects of metformin using small-molecular-weight paracellular markers. Fluids and Barriers of the CNS, 2021, 18, 28.	5.0	13
5	A Quasi-Physiological Microfluidic Blood-Brain Barrier Model for Brain Permeability Studies. Pharmaceutics, 2021, 13, 1474.	4.5	18
6	Isoflurane increases cell membrane fluidity significantly at clinical concentrations. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183140.	2.6	17
7	LC–MS/MS-based in vitro and in vivo investigation of blood–brain barrier integrity by simultaneous quantitation of mannitol and sucrose. Fluids and Barriers of the CNS, 2020, 17, 61.	5.0	21
8	Role of Endothelial RhoA in Melanoma and Lung Cancer Transâ€endothelial Migration and Metastasis. FASEB Journal, 2019, 33, 368.9.	0.5	0
9	Endothelial RhoA Regulates Breast Cancer Metastasis. FASEB Journal, 2019, 33, 647.40.	0.5	O
10	Simultaneous UPLC–MS/MS analysis of two stable isotope labeled versions of sucrose in mouse plasma and brain samples as markers of blood-brain barrier permeability and brain vascular space. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1073, 19-26.	2.3	14
11	Brain Uptake of [¹³ C] and [¹⁴ C]Sucrose Quantified by Microdialysis and Whole Tissue Analysis in Mice. Drug Metabolism and Disposition, 2018, 46, 1514-1518.	3.3	10
12	Evaluation of [14C] and [13C]Sucrose as Blood–Brain Barrier Permeability Markers. Journal of Pharmaceutical Sciences, 2017, 106, 1659-1669.	3.3	19
13	Effects of hepatic ischemia-reperfusion injury on the blood-brain barrier permeability to [14C] and [13C]sucrose. Metabolic Brain Disease, 2017, 32, 1903-1912.	2.9	11
14	Preparation and preliminary characterization of recombinant neurolysin for in vivo studies. Journal of Biotechnology, 2016, 234, 105-115.	3.8	19
15	Development and validation of a sensitive UPLC–MS/MS method for the quantitation of [13 C]sucrose in rat plasma, blood, and brain: Its application to the measurement of blood-brain barrier permeability. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1015-1016. 105-110.	2.3	11
16	Effects of Pringle maneuver and partial hepatectomy on the pharmacokinetics and blood–brain barrier permeability of sodium fluorescein in rats. Brain Research, 2015, 1618, 249-260.	2.2	7
17	Effects of Hepatic Ischemia-Reperfusion Injury on the P-Glycoprotein Activity at the Liver Canalicular Membrane and Blood–Brain Barrier Determined by In Vivo Administration of Rhodamine 123 in Rats. Pharmaceutical Research, 2014, 31, 861-873.	3 . 5	13
18	Effects of short-term portacaval anastomosis on the peripheral and brain disposition of the blood–brain barrier permeability marker sodium fluorescein in rats. Brain Research, 2013, 1531, 84-93.	2.2	16

#	Article	IF	CITATIONS
19	Transferrin Receptor Mediated Brain Uptake During Ischemia and Reperfusion. Journal of Pharmacy and Pharmaceutical Sciences, 2013, 16, 541.	2.1	7
20	Liposome-Encapsulated Polyethylenimine/Oligonucleotide Polyplexes Prepared by Reverse-Phase Evaporation Technique. AAPS PharmSciTech, 2012, 13, 373-378.	3.3	24
21	TCR Mimic Monoclonal Antibodies Induce Apoptosis of Tumor Cells via Immune Effector-Independent Mechanisms. Journal of Immunology, 2011, 186, 3265-3276.	0.8	28
22	Polyethylenimine/Oligonucleotide Polyplexes Investigated by Fluorescence Resonance Energy Transfer and Fluorescence Anisotropy. Oligonucleotides, 2011, 21, 109-114.	2.7	9
23	Acute Depression of Energy Metabolism after Microdialysis Probe Implantation is Distinct from Ischemia-Induced Changes in Mouse Brain. Neurochemical Research, 2011, 36, 109-116.	3.3	25
24	Unifying the mathematical modeling of in vivo and in vitro microdialysis. Journal of Pharmaceutical and Biomedical Analysis, 2011, 55, 54-63.	2.8	20
25	Metabolic and transmitter changes in core and penumbra after middle cerebral artery occlusion in mice. Brain Research, 2010, 1312, 101-107.	2.2	59
26	A novel vascular targeting strategy for brainâ€derived endothelial cells using a TCR mimic antibody. Journal of Cellular Physiology, 2010, 225, 664-672.	4.1	7
27	Nicotine Exacerbates Brain Edema during In Vitro and In Vivo Focal Ischemic Conditions. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 371-379.	2.5	70
28	Delivery of NADPH-Cytochrome P450 Reductase Antisense Oligos Using Avidinâ^'Biotin Approach. Bioconjugate Chemistry, 2010, 21, 203-207.	3.6	7
29	Liposome encapsulated polyethylenimine/ODN polyplexes for brain targeting. Journal of Controlled Release, 2009, 133, 230-237.	9.9	109
30	Targeted Delivery of Complexes of Biotin–PEG–Polyethylenimine and NF-κB Decoys to Brain-derived Endothelial Cells in Vitro. Pharmaceutical Research, 2008, 25, 605-615.	3.5	13
31	Neuroprotection in mice by NGP1-01 after transient focal brain ischemia. Brain Research, 2008, 1196, 113-120.	2.2	49
32	NMDA Receptor-Antagonistic Properties of Hyperforin, a Constituent of St. John's Wort. Journal of Pharmacological Sciences, 2006, 102, 47-54.	2.5	55
33	Inhibition of monocyte adhesion on brain-derived endothelial cells by NF-kappaB decoy/polyethylenimine complexes. Journal of Gene Medicine, 2005, 7, 1063-1076.	2.8	16
34	NGP1-01, a lipophilic polycyclic cage amine, is neuroprotective in focal ischemia. Neuroscience Letters, 2005, 383, 49-53.	2.1	75
35	How to measure drug transport across the blood-brain barrier. NeuroRx, 2005, 2, 15-26.	6.0	176
36	How to measure drug transport across the blood-brain barrier. Neurotherapeutics, 2005, 2, 15-26.	4.4	2

#	Article	IF	CITATIONS
37	Effect of poly(ethylene imine) molecular weight and pegylation on organ distribution and pharmacokinetics of polyplexes with oligodeoxynucleotides in mice. Drug Metabolism and Disposition, 2004, 32, 983-92.	3.3	67
38	Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. Journal of Controlled Release, 2003, 89, 113-125.	9.9	758
39	In vivo pharmacokinetics of calreticulin S-domain, an inhibitor of the classical complement pathway. International Immunopharmacology, 2002, 2, 415-422.	3.8	8
40	Sniffing neuropeptides: a transnasal approach to the human brain. Nature Neuroscience, 2002, 5, 514-516.	14.8	1,162
41	The structure of PEG-modified poly(ethylene imines) influences biodistribution and pharmacokinetics of their complexes with NF-kappaB decoy in mice. Pharmaceutical Research, 2002, 19, 810-817.	3.5	148
42	Sniffing neuropeptides: a transnasal approach to the human brain. Nature Neuroscience, 2002, 5, 514-516.	14.8	530
43	Delivery of peptides and proteins through the blood–brain barrier. Advanced Drug Delivery Reviews, 2001, 46, 247-279.	13.7	409
44	The Melanocortin Melanocyte-Stimulating Hormone/Adrenocorticotropin _{4–10} Decreases Body Fat in Humans ¹ . Journal of Clinical Endocrinology and Metabolism, 2001, 86, 1144-1148.	3.6	97
45	Stability of the Disulfide Bond in an Avidin-Biotin Linked Chimeric Peptide During in vivo Transcytosis Through Brain Endothelial Cells. Journal of Drug Targeting, 2000, 8, 425-434.	4.4	17
46	Diagnosis of CAA during Life. , 2000, , 21-41.		0
46	Diagnosis of CAA during Life. , 2000, , 21-41. Targeting Macromolecules to the Central Nervous System. , 2000, , .		0
		4.7	
47	Targeting Macromolecules to the Central Nervous System. , 2000, , . Does short-term treatment with modafinil affect blood pressure in patients with obstructive sleep	4.7	0
47	Targeting Macromolecules to the Central Nervous System., 2000, , . Does short-term treatment with modafinil affect blood pressure in patients with obstructive sleep apnea?. Clinical Pharmacology and Therapeutics, 1999, 65, 328-335. No increase in blood–brain barrier permeability after intraperitoneal injection of endotoxin in the		31
48	Targeting Macromolecules to the Central Nervous System., 2000, , . Does short-term treatment with modafinil affect blood pressure in patients with obstructive sleep apnea?. Clinical Pharmacology and Therapeutics, 1999, 65, 328-335. No increase in blood–brain barrier permeability after intraperitoneal injection of endotoxin in the rat. Journal of Neuroimmunology, 1998, 85, 131-136.	2.3	0 31 35
47 48 49 50	Targeting Macromolecules to the Central Nervous System., 2000, , . Does short-term treatment with modafinil affect blood pressure in patients with obstructive sleep apnea?. Clinical Pharmacology and Therapeutics, 1999, 65, 328-335. No increase in blood–brain barrier permeability after intraperitoneal injection of endotoxin in the rat. Journal of Neuroimmunology, 1998, 85, 131-136. Antibody delivery through the blood-brain barrier. Advanced Drug Delivery Reviews, 1995, 15, 53-72. Pharmacokinetic differences between111In- and125I-Labeled cationized monoclonal antibody against	2.3	0 31 35 24
47 48 49 50	Targeting Macromolecules to the Central Nervous System., 2000, ,. Does short-term treatment with modafinil affect blood pressure in patients with obstructive sleep apnea?. Clinical Pharmacology and Therapeutics, 1999, 65, 328-335. No increase in blood–brain barrier permeability after intraperitoneal injection of endotoxin in the rat. Journal of Neuroimmunology, 1998, 85, 131-136. Antibody delivery through the blood-brain barrier. Advanced Drug Delivery Reviews, 1995, 15, 53-72. Pharmacokinetic differences between111In- and125I-Labeled cationized monoclonal antibody against 1²-Amyloid in mouse and dog. Drug Delivery, 1995, 2, 128-135. In Vivo Cleavability of a Disulfide-Based Chimeric Opioid Peptide in Rat Brain. Bioconjugate Chemistry,	2.3 13.7 5.7	0 31 35 24

ULRICH BICKEL

#	Article	IF	CITATIONS
55	Delivery of peptides and proteins through the blood-brain barrier. Advanced Drug Delivery Reviews, 1993, 10, 205-245.	13.7	37
56	ACUTE ENDOCRINE FAILURE AFTER BRAIN DEATH?. Transplantation, 1992, 54, 851-857.	1.0	172
57	Pharmacokinetics of galanthamine in humans and corresponding cholinesterase inhibition. Clinical Pharmacology and Therapeutics, 1991, 50, 420-428.	4.7	94
58	Preclinical and Clinical Studies with Galanthamine. , 1991, , 329-336.		5
59	Time Course of ACTH 4–10 Effects on Human Attention. Neuroendocrinology, 1990, 52, 169-174.	2.5	17