

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3698457/publications.pdf Version: 2024-02-01

		840585	839398
18	5,894	11	18
papers	citations	h-index	g-index
21	21	21	5384
all docs	docs citations	times ranked	citing authors

ANCLI

#	Article	IF	CITATIONS
1	Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Research, 2014, 24, 177-189.	5.7	1,719
2	Nuclear m 6 A Reader YTHDC1 Regulates mRNA Splicing. Molecular Cell, 2016, 61, 507-519.	4.5	1,432
3	5-methylcytosine promotes mRNA export — NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Research, 2017, 27, 606-625.	5.7	666
4	Cytoplasmic m6A reader YTHDF3 promotes mRNA translation. Cell Research, 2017, 27, 444-447.	5.7	606
5	m6A RNA Methylation Is Regulated by MicroRNAs and Promotes Reprogramming to Pluripotency. Cell Stem Cell, 2015, 16, 289-301.	5.2	483
6	5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs. Nature Cell Biology, 2019, 21, 978-990.	4.6	410
7	A novel m6A reader Prrc2a controls oligodendroglial specification and myelination. Cell Research, 2019, 29, 23-41.	5.7	250
8	RNA 5-Methylcytosine Facilitates the Maternal-to-Zygotic Transition by Preventing Maternal mRNA Decay. Molecular Cell, 2019, 75, 1188-1202.e11.	4.5	242
9	RNA-Seq transcriptome reveals different molecular responses during human and mouse oocyte maturation and fertilization. BMC Genomics, 2020, 21, 475.	1.2	22
10	Single-cell RNA sequencing reveals regulation of fetal ovary development in the monkey (Macaca) Tj ETQq0 0 0 r	rgBT /Over 3.1	lock 10 Tf 50
11	Degradation of Ccnb3 is essential for maintenance of MII arrest in oocyte. Biochemical and Biophysical Research Communications, 2020, 521, 265-269.	1.0	13
12	Effects of various calcium transporters on mitochondrial Ca ²⁺ changes and oocyte maturation. Journal of Cellular Physiology, 2021, 236, 6548-6558.	2.0	7
13	Cell division cycle 23 is required for mouse oocyte meiotic maturation. FASEB Journal, 2020, 34, 8990-9002.	0.2	5
14	Mechanistic insights into the reduced developmental capacity of in vitro matured oocytes and importance of cumulus cells in oocyte quality determination. Journal of Cellular Physiology, 2020, 235, 9743-9751.	2.0	5
15	ÂNuclear and cytoplasmic quality of oocytes derived from serumâ€free culture of secondary follicles in vitro. Journal of Cellular Physiology, 2021, 236, 5352-5361.	2.0	5
16	Regulation of [Ca2+]i oscillations and mitochondrial activity by various calcium transporters in mouse oocytes. Reproductive Biology and Endocrinology, 2020, 18, 87.	1.4	4
17	Effects of m <scp>itochondriaâ€associated</scp> Ca ²⁺ transporters suppression on oocyte activation. Cell Biochemistry and Function, 2021, 39, 248-257.	1.4	4

18The methylation status in GNAS clusters May Be an epigenetic marker for oocyte quality. Biochemical
and Biophysical Research Communications, 2020, 533, 586-591.1.02