Ricardo A Mata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3698082/publications.pdf

Version: 2024-02-01

99 papers 3,268 citations

147801 31 h-index 52 g-index

107 all docs

107 docs citations

107 times ranked

3998 citing authors

#	Article	IF	CITATIONS
1	High-Accuracy Computation of Reaction Barriers in Enzymes. Angewandte Chemie - International Edition, 2006, 45, 6856-6859.	13.8	253
2	The inhibition mechanism of human 20 $\langle i \rangle S \langle i \rangle$ proteasomes enables next-generation inhibitor design. Science, 2016, 353, 594-598.	12.6	170
3	Benchmarking Quantum Chemical Methods: Are We Heading in the Right Direction?. Angewandte Chemie - International Edition, 2017, 56, 11011-11018.	13.8	119
4	Preparation of RSn(I)–Sn(I)R with Two Unsymmetrically Coordinated Sn(I) Atoms and Subsequent Gentle Activation of P ₄ . Journal of the American Chemical Society, 2011, 133, 17889-17894.	13.7	105
5	The Last Globally Stable Extended Alkane. Angewandte Chemie - International Edition, 2013, 52, 463-466.	13.8	105
6	Manganese(I)â€Catalyzed Dispersionâ€Enabled Câ^'H/Câ^'C Activation. Chemistry - A European Journal, 2017, 23, 5443-5447.	3.3	98
7	Local correlation methods with a natural localized molecular orbital basis. Molecular Physics, 2007, 105, 2753-2761.	1.7	83
8	Calculation of smooth potential energy surfaces using local electron correlation methods. Journal of Chemical Physics, 2006, 125, 184110.	3.0	82
9	Does DFT-D estimate accurate energies for the binding of ligands to metal complexes?. Dalton Transactions, 2011, 40, 11176.	3.3	81
10	Toward accurate barriers for enzymatic reactions: QM/MM case study on p-hydroxybenzoate hydroxylase. Journal of Chemical Physics, 2008, 128, 025104.	3.0	79
11	Correlation regions within a localized molecular orbital approach. Journal of Chemical Physics, 2008, 128, 144106.	3.0	76
12	A lysine–cysteine redox switch with an NOS bridge regulates enzyme function. Nature, 2021, 593, 460-464.	27.8	74
13	Free-energy perturbation and quantum mechanical study of SAMPL4 octa-acid host–guest binding energies. Journal of Computer-Aided Molecular Design, 2014, 28, 375-400.	2.9	70
14	Low-barrier hydrogen bonds in enzyme cooperativity. Nature, 2019, 573, 609-613.	27.8	68
15	Solution Structures of Hauser Base ^{<i>i</i>} Pr ₂ NMgCl and <i>Turbo</i> -Hauser Base ^{<i>i</i>} Pr ₂ NMgCl·LiCl in THF and the Influence of LiCl on the Schlenk-Equilibrium. Journal of the American Chemical Society, 2016, 138, 4796-4806.	13.7	65
16	Functional Model for the [Fe] Hydrogenase Inspired by the Frustrated Lewis Pair Concept. Journal of the American Chemical Society, 2014, 136, 16626-16634.	13.7	63
17	Internal dynamics and guest binding of a sterically overcrowded host. Chemical Science, 2016, 7, 4676-4684.	7.4	54
18	Monomeric Sn(ii) and Ge(ii) hydrides supported by a tridentate pincer-based ligand. Chemical Communications, 2012, 48, 4890.	4.1	53

#	Article	IF	CITATIONS
19	Limits of Coupled-Cluster Calculations for Non-Heme Iron Complexes. Journal of Chemical Theory and Computation, 2019, 15, 922-937.	5.3	51
20	Dinuclear Rhenium Complex with a Proton Responsive Ligand as a Redox Catalyst for the Electrochemical CO ₂ Reduction. Inorganic Chemistry, 2017, 56, 4176-4185.	4.0	50
21	An incremental correlation approach to excited state energies based on natural transition/localized orbitals. Journal of Chemical Physics, 2011, 134, 034122.	3.0	47
22	The furan microsolvation blind challenge for quantum chemical methods: First steps. Journal of Chemical Physics, 2018, 148, 014301.	3.0	44
23	Large Density-Functional and Basis-Set Effects for the DMSO Reductase Catalyzed Oxo-Transfer Reaction. Journal of Chemical Theory and Computation, 2013, 9, 1799-1807.	5.3	42
24	Comparative calculations for the A-frame molecules [S(MPH3)2] (M=Cu, Ag, Au) at levels up to CCSD(T). Chemical Physics Letters, 2005, 405, 148-152.	2.6	38
25	Study of ligand effects in aurophilic interactions using local correlation methods. Physical Chemistry Chemical Physics, 2013, 15, 18115.	2.8	37
26	Visualizing dispersion interactions through the use of local orbital spaces. Journal of Computational Chemistry, 2017, 38, 15-23.	3.3	37
27	Pairwise H ₂ /D ₂ Exchange and H ₂ Substitution at a Bimetallic Dinickel(II) Complex Featuring Two Terminal Hydrides. Journal of the American Chemical Society, 2017, 139, 16720-16731.	13.7	36
28	A Stable Cation of a CSi ₃ P Fiveâ€Membered Ring with a Weakly Coordinating Chloride Anion. Angewandte Chemie - International Edition, 2011, 50, 12510-12513.	13.8	35
29	Widespread occurrence of covalent lysine–cysteine redox switches in proteins. Nature Chemical Biology, 2022, 18, 368-375.	8.0	34
30	Reductive half-reaction of aldehyde oxidoreductase toward acetaldehyde: Ab initio and free energy quantum mechanical/molecular mechanical calculations. Journal of Chemical Physics, 2010, 132, 035101.	3.0	33
31	Structural, energetic, and electronic properties of (CH3CN)2–8 clusters by density functional theory. Computational and Theoretical Chemistry, 2004, 673, 155-164.	1.5	31
32	Relative anion binding affinity in a series of interpenetrated coordination cages. Dalton Transactions, 2013, 42, 15906.	3.3	31
33	A Simple One-Body Approach to the Calculation of the First Electronic Absorption Band of Water. Journal of Chemical Theory and Computation, 2009, 5, 1829-1837.	5.3	30
34	The accuracy of local MP2 methods for conformational energies. Molecular Physics, 2008, 106, 1899-1906.	1.7	29
35	Communication: Towards the binding energy and vibrational red shift of the simplest organic hydrogen bond: Harmonic constraints for methanol dimer. Journal of Chemical Physics, 2014, 141, 101105.	3.0	28
36	The first microsolvation step for furans: New experiments and benchmarking strategies. Journal of Chemical Physics, 2020, 152, 164303.	3.0	28

#	Article	IF	CITATIONS
37	Heteroaromaticity approached by charge density investigations and electronic structure calculations. Physical Chemistry Chemical Physics, 2013, 15, 20600.	2.8	27
38	Preorganized Anion Traps for Exploiting Anion–π Interactions: An Experimental and Computational Study. Chemistry - A European Journal, 2013, 19, 16988-17000.	3.3	27
39	Influence of size, shape, heteroatom content and dispersive contributions on guest binding in a coordination cage. Chemical Communications, 2017, 53, 11933-11936.	4.1	27
40	Soft hydrogen bonds to alkenes: the methanol–ethene prototype under experimental and theoretical scrutiny. Chemical Science, 2015, 6, 3738-3745.	7.4	26
41	All That Binds Is Not Goldâ€"The Relative Weight of Aurophilic Interactions in Complex Formation. Journal of Physical Chemistry A, 2018, 122, 6918-6925.	2.5	26
42	Structural diversity in sodium doped water trimers. Physical Chemistry Chemical Physics, 2012, 14, 9054.	2.8	25
43	NFDI4Chem - Towards a National Research Data Infrastructure for Chemistry in Germany. Research Ideas and Outcomes, 0, 6, .	1.0	25
44	Dynamic polarizability, Cauchy moments, and the optical absorption spectrum of liquid water: A sequential molecular dynamics/quantum mechanical approach. Journal of Chemical Physics, 2009, 130, 014505.	3.0	24
45	Synthesis and Structural Characterization of Homochiral Homoâ€oligomers of Parent <i>ci><i>trans</i>a€•and <i>trans</i>a6Furanoidâ€Î²â€Amino Acids. Chemistry - A European Journal, 2011, 17, 12946-12954.</i>	3.3	24
46	Highly selective and sensitive fluorescence detection of Zn ²⁺ and Cd ²⁺ ions by using an acridine sensor. Dalton Transactions, 2016, 45, 5689-5699.	3.3	24
47	Effects of Metal Coordination on the π-System of the 2,5-Bis-{(pyrrolidino)-methyl}-pyrrole Pincer Ligand. Inorganic Chemistry, 2013, 52, 9539-9548.	4.0	23
48	A quantum-mechanical study of the reaction mechanism of sulfite oxidase. Journal of Biological Inorganic Chemistry, 2014, 19, 1165-1179.	2.6	23
49	A Computational Comparison of Oxygen Atom Transfer Catalyzed by Dimethyl SulfÂoxide Reductase with Mo and W. European Journal of Inorganic Chemistry, 2015, 2015, 3580-3589.	2.0	23
50	A push-and-pull model for allosteric anion binding in cage complexes. Physical Chemistry Chemical Physics, 2012, 14, 12746.	2.8	22
51	Reaction of Nâ€Heterocyclic Silylenes with Thioketone: Formation of Silicon–Sulfur Three (Siâ€Câ€S)―and Five (Siâ€Câ€Câ€Câ€S)â€Membered Ring Systems. Chemistry - A European Journal, 2013, 19, 3715-3720.	3.3	22
52	QM/MM study of the reaction mechanism of sulfite oxidase. Scientific Reports, 2018, 8, 4684.	3.3	22
53	Incremental expansions for SCF interaction energies: A comparison for hydrogen-bonded clusters. Chemical Physics Letters, 2008, 465, 136-141.	2.6	20
54	Characterization of a Multicomponent Lithium Lithiate from a Combined Xâ€Ray Diffraction, NMR Spectroscopy, and Computational Approach. Angewandte Chemie - International Edition, 2014, 53, 13282-13287.	13.8	20

#	Article	IF	CITATIONS
55	Application of high level wavefunction methods in quantum mechanics/molecular mechanics hybrid schemes. Physical Chemistry Chemical Physics, 2010, 12, 5041.	2.8	18
56	Coupledâ€Cluster Interaction Energies for 200â€Atom Host–Guest Systems. ChemPhysChem, 2014, 15, 3270-3281.	2.1	18
57	Time-Resolved Spectroscopy of Photoinduced Electron Transfer in Dinuclear and Tetranuclear Fe/Co Prussian Blue Analogues. Inorganic Chemistry, 2021, 60, 449-459.	4.0	18
58	Electronic Excitation of Cl ^{â^'} in Liquid Water and at the Surface of a Cluster: A Sequential Bornâ^'Oppenheimer Molecular Dynamics/Quantum Mechanics Approach. Journal of Physical Chemistry A, 2009, 113, 14684-14690.	2.5	15
59	The Layered Structure of [Na(NH ₃) ₄][Indenide] Containing a Squareâ€Planar Na(NH ₃) ₄ ⁺ Cation. Angewandte Chemie - International Edition, 2013, 52, 734-738.	13.8	15
60	Lipoxygenase 2 from Cyanothece sp. controls dioxygen insertion by steric shielding and substrate fixation. Scientific Reports, 2017, 7, 2069.	3.3	14
61	Quantenchemische Methoden im Leistungsvergleich: Stimmt die Richtung noch?. Angewandte Chemie, 2017, 129, 11155-11163.	2.0	14
62	Ligand Protonation Triggers H ₂ Release from a Dinickel Dihydride Complex to Give a Doubly "Tâ€â€6haped Dinickel(I) Metallodiradical. Angewandte Chemie - International Edition, 2021, 60, 1891-1896.	13.8	13
63	Atomdroid: A Computational Chemistry Tool for Mobile Platforms. Journal of Chemical Information and Modeling, 2012, 52, 1072-1078.	5.4	12
64	Strong Intermolecular Interactions Shaping a Small Piano tool Complex. Angewandte Chemie - International Edition, 2013, 52, 10365-10369.	13.8	12
65	The phenyl vinyl ether–methanol complex: a model system for quantum chemistry benchmarking. Beilstein Journal of Organic Chemistry, 2018, 14, 1642-1654.	2.2	12
66	Inâ€Fjord Substitution in Expanded Helicenes: Effects of the Insert on the Inversion Barrier and Helical Pitch. Chemistry - A European Journal, 2021, 27, 13358-13366.	3.3	12
67	Ground-state destabilization by electrostatic repulsion is not a driving force in orotidine-5′-monophosphate decarboxylase catalysis. Nature Catalysis, 2022, 5, 332-341.	34.4	12
68	Ein kleiner Klavierstuhlâ€Komplex, geformt durch starke intermolekulare Wechselwirkungen. Angewandte Chemie, 2013, 125, 10555-10559.	2.0	10
69	Local Hybrid QM/QM Calculations of Reaction Pathways in Metallobiosites. Journal of Chemical Theory and Computation, 2014, 10, 5397-5404.	5.3	10
70	Theoretical Studies of the Electronic Absorption Spectra of Thiamin Diphosphate in Pyruvate Decarboxylase. Biochemistry, 2017, 56, 1854-1864.	2.5	10
71	Anomeric Stereoauxiliary Cleavage of the Câ^N Bond of <scp>d</scp> â€Glucosamine for the Preparation of Imidazo[1,5â€a]pyridines. Chemistry - A European Journal, 2022, 28, .	3.3	10
72	Strained hydrogen bonding in imidazole trimer: a combined infrared, Raman, and theory study. Physical Chemistry Chemical Physics, 2019, 21, 5989-5998.	2.8	9

#	Article	IF	CITATIONS
73	Setting up the HyDRA blind challenge for the microhydration of organic molecules. Physical Chemistry Chemical Physics, 2022, 24, 11442-11454.	2.8	9
74	Assessing the accuracy of many-body expansions for the computation of solvatochromic shifts. Molecular Physics, 2010, 108, 381-392.	1.7	8
75	Photoionization of CH ₃ N ₃ Produces ³ B ₂ N ₃ [–] : A Theoretical and Experimental Study of the Ion-Pair Channel. Journal of Physical Chemistry Letters, 2011, 2, 2311-2315.	4.6	8
76	Accelerating the Computation of Induced Dipoles for Molecular Mechanics with Dataflow Engines. , 2013, , .		8
77	Bracketing subtle conformational energy differences between self-solvated and stretched trifluoropropanol. Physical Chemistry Chemical Physics, 2015, 17, 9899-9909.	2.8	8
78	A Review of Density Functional Models for the Description of Fe(II) Spin-Crossover Complexes. Molecules, 2020, 25, 5176.	3.8	8
79	Electrophilic Cyanative Alkenylation of Arenes. Organic Letters, 2020, 22, 4932-4937.	4.6	8
80	Photochemical Properties of Re(CO) ₃ Complexes with and without a Local Proton Source and Implications for CO ₂ Reduction Catalysis. Organometallics, 2020, 39, 2405-2414.	2.3	8
81	Dispersion forces in chirality recognition – a density functional and wave function theory study of diols. Physical Chemistry Chemical Physics, 2021, 23, 12093-12104.	2.8	8
82	Helium Nanodroplet Study of the Hydrogen-Bonded OH Vibrations in HCl–H ₂ O Clusters. Journal of Physical Chemistry A, 2015, 119, 2636-2643.	2.5	7
83	Temperatureâ€Dependent Dynamics of Push–Pull Rotor Systems Based on Acridinylidene Cyanoacetic Esters. European Journal of Organic Chemistry, 2017, 2017, 5141-5146.	2.4	6
84	Hybrid Local Molecular Orbital: Molecular Orbital Calculations for Open Shell Systems. Journal of Chemical Theory and Computation, 2018, 14, 5192-5202.	5.3	6
85	A full additive QM/MM scheme for the computation of molecular crystals with extension to many-body expansions. Journal of Chemical Physics, 2019, 150, 154118.	3.0	6
86	Iterative induced dipoles computation for molecular mechanics on GPUs., 2010,,.		5
87	QM/MM Approaches to the Electronic Spectra of Hydrogen-Bonding Systems with Connection to Many-Body Decomposition Schemes. Advances in Quantum Chemistry, 2010, , 99-144.	0.8	4
88	Study of Specific Ion–Amino Acid Interactions through the Use of Local Correlation Methods. Journal of Physical Chemistry A, 2012, 116, 5464-5471.	2.5	4
89	Application of Local Second-Order Møller–Plesset Perturbation Theory to the Study of Structures in Solution. Journal of Chemical Theory and Computation, 2012, 8, 3053-3060.	5.3	4
90	High level potential energy surface and mechanism of Al(CH3)2OCH3-promoted lactone polymerization: initiation and propagation. Physical Chemistry Chemical Physics, 2017, 19, 8989-8999.	2.8	4

#	Article	IF	Citations
91	A high-throughput computational approach to UV-Vis spectra in protein mutants. Physical Chemistry Chemical Physics, 2019, 21, 20678-20692.	2.8	4
92	Critical Assessment of RAFT Equilibrium Constants: Theory Meets Experiment. Macromolecular Theory and Simulations, 2020, 29, 2000022.	1.4	4
93	Ligand Protonation Triggers H 2 Release from a Dinickel Dihydride Complex to Give a Doubly "Tâ€â€Shaped Dinickel(I) Metallodiradical. Angewandte Chemie, 2021, 133, 1919-1924.	2.0	4
94	Theoretical Studies of the Acid–Base Equilibria in a Model Active Site of the Human 20S Proteasome. Journal of Chemical Information and Modeling, 2021, 61, 1942-1953.	5.4	4
95	Computation of Induced Dipoles in Molecular Mechanics Simulations Using Graphics Processors. Journal of Chemical Information and Modeling, 2012, 52, 1159-1166.	5.4	3
96	Optimization and benchmarking of a perturbative Metropolis Monte Carlo quantum mechanics/molecular mechanics program. Journal of Chemical Physics, 2017, 147, 244105.	3.0	2
97	Experimental charge density study on FLPs and a FLP reaction product. Zeitschrift Fur Kristallographie - Crystalline Materials, 2018, 233, 723-731.	0.8	2
98	Efficient parallelization of perturbative Monte Carlo QM/MM simulations in heterogeneous platforms. International Journal of High Performance Computing Applications, 2017, 31, 499-516.	3.7	1
99	FJK - A cap-free fragment approach with embedding Fock potentials. AIP Conference Proceedings, 2015, , .	0.4	0