
Luis A Villaescusa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3698073/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sandwich-Type Zeolite Intergrowths with MFI and the Novel Extra-Large Pore IDM-1 as Ordered End-Members. Chemistry of Materials, 2021, 33, 7869-7877.	3.2	6
2	IDMâ€1: A Zeolite with Intersecting Medium and Extraâ€Large Pores Built as an Expansion of Zeolite MFI. Angewandte Chemie, 2020, 132, 11379-11382.	1.6	12
3	IDMâ€1: A Zeolite with Intersecting Medium and Extraâ€Large Pores Built as an Expansion of Zeolite MFI. Angewandte Chemie - International Edition, 2020, 59, 11283-11286.	7.2	17
4	Driving the Crystallization of Zeolites. Chemical Record, 2018, 18, 713-723.	2.9	17
5	Time Evolution of an Aluminogermanate Zeolite Synthesis: Segregation of Two Closely Similar Phases with the Same Structure Type. Chemistry of Materials, 2016, 28, 3090-3098.	3.2	8
6	Framework Reduction of GeO ₂ Zeolites During Calcination. Chemistry of Materials, 2016, 28, 7544-7550.	3.2	17
7	Encapsulation of folic acid in different silica porous supports: A comparative study. Food Chemistry, 2016, 196, 66-75.	4.2	38
8	Supramolecular Transcription of Guanosine Monophosphate into Mesostructured Silica. Angewandte Chemie - International Edition, 2014, 53, 12106-12110.	7.2	16
9	Self-Assembly Mechanism of Folate-Templated Mesoporous Silica. Langmuir, 2013, 29, 12003-12012.	1.6	27
10	Squaraine "ships―in the Y zeolite "bottle― a chromogenic sensing material for the detection of volatile amines and thiols. Journal of Materials Chemistry, 2011, 21, 5004.	6.7	22
11	Acidity and accessibility studies on mesoporous ITQ-4 zeolite. Catalysis Today, 2010, 152, 11-16.	2.2	17
12	Mesoporous Hybrid Materials Containing Nanoscopic "Binding Pockets―for Colorimetric Anion Signaling in Water by using Displacement Assays. Chemistry - A European Journal, 2009, 15, 9024-9033.	1.7	42
13	Toward Functional Clathrasils: Size―and Compositionâ€Controlled Octadecasil Nanocrystals by Desilication. Angewandte Chemie - International Edition, 2008, 47, 7913-7917.	7.2	43
14	Mesoporous beta zeolite obtained by desilication. Microporous and Mesoporous Materials, 2008, 114, 93-102.	2.2	229
15	Hybrid materials with nanoscopic anion-binding pockets for the colorimetric sensing of phosphate in water using displacement assays. Chemical Communications, 2008, , 3639.	2.2	35
16	Hybrid functionalised mesoporous silica–polymer composites for enhanced analyte monitoring using optical sensors. Journal of Materials Chemistry, 2008, 18, 5815.	6.7	42
17	Pure Silica Large Pore Zeolite ITQ-7:  Synthetic Strategies, Structure-Directing Effects, and Control and Nature of Structural Disorder. Chemistry of Materials, 2007, 19, 1601-1612.	3.2	19
18	Sensory hybrid host materials for the selective chromo-fluorogenic detection of biogenic amines. Chemical Communications, 2006, , 2239-2241.	2.2	72

Luis A Villaescusa

#	Article	IF	CITATIONS
19	Anchoring Dyes into Multidimensional Large-Pore Zeolites: A Prospective Use as Chromogenic Sensing Materials. Chemistry - A European Journal, 2006, 12, 2162-2170.	1.7	48
20	Evolution of isomorphously substituted iron zeolites during activation: comparison of Fe-beta and Fe-ZSM-5. Journal of Catalysis, 2005, 232, 318-334.	3.1	258
21	Host Solids Containing Nanoscale Anion-Binding Pockets and Their Use in Selective Sensing Displacement Assays. Angewandte Chemie - International Edition, 2005, 44, 2918-2922.	7.2	88
22	Nâ€Methyl,Nâ€(propylâ€3â€ŧrimethoxysilyl) Aniline, an Intermediate for Anchoring Dyes on Siliceous Supports. Synthetic Communications, 2005, 35, 1511-1516.	1.1	2
23	Growth of Mesoporous Materials within Colloidal Crystal Films by Spin-Coating. Journal of Physical Chemistry B, 2005, 109, 19643-19649.	1.2	44
24	New Chromogenic Probes into Nanoscopic Pockets in Enhanced Sensing Protocols for Amines in Aqueous Environments. Organic Letters, 2005, 7, 5469-5472.	2.4	36
25	Chromogenic Discrimination of Primary Aliphatic Amines in Water with Functionalized Mesoporous Silica. Advanced Materials, 2004, 16, 1783-1786.	11.1	124
26	Light hydrocarbon sorption properties of pure silica Si-CHA and ITQ-3 and high silica ZSM-58. Microporous and Mesoporous Materials, 2004, 67, 27-33.	2.2	183
27	Synthesis, characterization and control of faulting in STF/SFF topologies, a new family of intergrowth zeolitesElectronic supplementary information (ESI) available: details of DIFFaX simulations. See http://www.rsc.org/suppdata/jm/b3/b315643e/. Journal of Materials Chemistry, 2004, 14, 1982.	6.7	30
28	A severely interrupted germanate zeolite framework synthesised from isolated double four-ring unitsElectronic supplementary information (ESI) available: XRD and NMR data. See http://www.rsc.org/suppdata/dt/b3/b314942k/. Dalton Transactions, 2004, , 820.	1.6	42
29	Solid-State NMR Studies of the Fluoride-Containing Zeolite SSZ-44. Chemistry of Materials, 2004, 16, 600-603.	3.2	23
30	Efficient boron removal by using mesoporous matrices grafted with saccharides. Chemical Communications, 2004, , 2198-2199.	2.2	37
31	Toward the Development of Ionically Controlled Nanoscopic Molecular Gates. Journal of the American Chemical Society, 2004, 126, 8612-8613.	6.6	225
32	An X-ray Diffraction and MAS NMR Study of the Thermal Expansion Properties of Calcined Siliceous Ferrierite. Journal of the American Chemical Society, 2003, 125, 4342-4349.	6.6	76
33	The location of fluoride and organic guests in â€~as-made' pure silica zeolites FER and CHA. Journal of Materials Chemistry, 2003, 13, 1978-1982.	6.7	57
34	Infrared Investigation of Fluoride Occluded in Double Four-Member Rings in Zeolites. Journal of Physical Chemistry B, 2002, 106, 2796-2800.	1.2	23
35	Combined Solid State NMR and X-ray Diffraction Investigation of the Local Structure of the Five-Coordinate Silicon in Fluoride-Containing As-Synthesized STF Zeolite. Journal of the American Chemical Society, 2002, 124, 7770-7778.	6.6	87
36	Toward Inorganic Electrides. Journal of the American Chemical Society, 2002, 124, 1170-1171.	6.6	155

Luis A Villaescusa

#	Article	IF	CITATIONS
37	Synthesis and structure of fluoride-containing GeO2 analogues of zeolite double four-ring building unitsElectronic supplementary information (ESI) available: X-ray diffraction data. See http://www.rsc.org/suppdata/cc/b2/b207374a/. Chemical Communications, 2002, , 2220-2221.	2.2	87
38	The widespread occurrence of negative thermal expansion in zeolites. Journal of Materials Chemistry, 2001, 11, 212-216.	6.7	180
39	The Location and Ordering of Fluoride Ions in Pure Silica Zeolites with Framework Types IFR and STF; Implications for the Mechanism of Zeolite Synthesis in Fluoride Media. Journal of the American Chemical Society, 2001, 123, 8797-8805.	6.6	83
40	Synthesis and Physicochemical Characterization of an Aluminosilicate Zeolite with IFR Topology, Prepared by the Fluoride Route. Chemistry of Materials, 2001, 13, 2332-2341.	3.2	27
41	Variable-Temperature Microcrystal X-ray Diffraction Studies of Negative Thermal Expansion in the Pure Silica Zeolite IFR. Journal of the American Chemical Society, 2001, 123, 5453-5459.	6.6	73
42	High silica zeolites with three-dimensional systems of large pore channels. Microporous and Mesoporous Materials, 2001, 48, 11-22.	2.2	133
43	Synthesis and catalytic activity of Ti-ITQ-7: a new oxidation catalyst with a three-dimensional system of large pore channels. Chemical Communications, 2000, , 761-762.	2.2	73
44	Imposition of Polarity on a Centrosymmetric Zeolite Host:  The Effect of Fluoride Ions on Template Ordering in Zeolite IFR. Journal of the American Chemical Society, 2000, 122, 7128-7129.	6.6	89
45	ITQ-7: A New Pure Silica Polymorph with a Three-Dimensional System of Large Pore Channels. Angewandte Chemie - International Edition, 1999, 38, 1997-2000.	7.2	160
46	Negative Thermal Expansion in the Siliceous Zeolites Chabazite and ITQ-4:Â A Neutron Powder Diffraction Study. Chemistry of Materials, 1999, 11, 2508-2514.	3.2	128
47	Strong negative thermal expansion in the siliceous zeolites ITQ-1, ITQ-3 and SSZ-23. Journal of Materials Chemistry, 1999, 9, 349-351.	6.7	64
48	Zeolite- \hat{I}^2 grown epitaxially on SSZ-31 nanofibers. Chemical Communications, 1999, , 921-922.	2.2	18
49	Five-Coordinate Silicon in High-Silica Zeolites. Journal of the American Chemical Society, 1999, 121, 3368-3376.	6.6	187
50	ITQ-7: A New Pure Silica Polymorph with a Three-Dimensional System of Large Pore Channels. Angewandte Chemie - International Edition, 1999, 38, 1997-2000.	7.2	3
51	Synthesis and structure of ITQ-9: a new microporous SiO2 polymorph. Chemical Communications, 1998, , 2329-2330.	2.2	34
52	Calcination of Octadecasil:Â Fluoride Removal and Symmetry of the Pure SiO2Host. Chemistry of Materials, 1998, 10, 3966-3973.	3.2	62
53	ITQ-4: a new large pore microporous polymorph of silica. Chemical Communications, 1997, , 749-750.	2.2	31
54	Structure of ITQ-4, a New Pure Silica Polymorph Containing Large Pores and a Large Void Volume. Chemistry of Materials, 1997, 9, 1713-1715.	3.2	93

#	Article	IF	CITATIONS
55	Synthesis and Structure of ITQ-3, the First Pure Silica Polymorph with a Two-Dimensional System of Straight Eight-Ring Channels. Angewandte Chemie International Edition in English, 1997, 36, 2659-2661.	4.4	101