Beatriz Barrocas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3698016/publications.pdf

Version: 2024-02-01

567281 713466 22 435 15 21 citations h-index g-index papers 22 22 22 591 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Photocatalytic Reduction of Carbon Dioxide on TiO2 Heterojunction Photocatalysts—A Review. Materials, 2022, 15, 967.	2.9	23
2	Titanosilicates enhance carbon dioxide photocatalytic reduction. Applied Materials Today, 2022, 26, 101392.	4.3	5
3	α-Fe2O3 Nanoparticles/Iron-Containing Vermiculite Composites: Structural, Textural, Optical and Photocatalytic Properties. Minerals (Basel, Switzerland), 2022, 12, 607.	2.0	3
4	Visible light photocatalytic degradation of amitriptyline using cobalt doped titanate nanowires: Kinetics and characterization of transformation products. Journal of Environmental Chemical Engineering, 2020, 8, 103585.	6.7	10
5	Impact of Fe, Mn co-doping in titanate nanowires photocatalytic performance for emergent organic pollutants removal. Chemosphere, 2020, 250, 126240.	8.2	30
6	A comparative study on emergent pollutants photo-assisted degradation using ruthenium modified titanate nanotubes and nanowires as catalysts. Journal of Environmental Sciences, 2020, 92, 38-51.	6.1	11
7	Photocatalytic degradation of cyclophosphamide and ifosfamide: Effects of wastewater matrix, transformation products and in silico toxicity prediction. Science of the Total Environment, 2019, 692, 503-510.	8.0	25
8	Photocatalytic degradation of amitriptyline, trazodone and venlafaxine using modified cobalt-titanate nanowires under UV–Vis radiation: Transformation products and in silico toxicity. Chemical Engineering Journal, 2019, 373, 1338-1347.	12.7	23
9	Influence of Re and Ru doping on the structural, optical and photocatalytic properties of nanocrystalline TiO2. SN Applied Sciences, 2019, $1,1$.	2.9	9
10	Ruthenium-Modified Titanate Nanowires for the Photocatalytic Oxidative Removal of Organic Pollutants from Water. ACS Applied Nano Materials, 2019, 2, 1341-1349.	5.0	15
11	Enhanced photocatalytic degradation of psychoactive substances using amine-modified elongated titanate nanostructures. Environmental Science: Nano, 2018, 5, 350-361.	4.3	16
12	Titanate nanofibers sensitized with ZnS and Ag2S nanoparticles as novel photocatalysts for phenol removal. Applied Catalysis B: Environmental, 2017, 218, 709-720.	20.2	49
13	Novel titanate nanotubes-cyanocobalamin materials: Synthesis and enhanced photocatalytic properties for pollutants removal. Solid State Sciences, 2017, 63, 30-41.	3.2	21
14	Titanate nanotubes sensitized with silver nanoparticles: Synthesis, characterization and in-situ pollutants photodegradation. Applied Surface Science, 2016, 385, 18-27.	6.1	16
15	Titanate Nanorods Modified with Nanocrystalline ZnS Particles and Their Photocatalytic Activity on Pollutant Removal. Journal of Materials Science and Technology, 2016, 32, 1122-1128.	10.7	17
16	The effect of ionic Co presence on the structural, optical and photocatalytic properties of modified cobalt–titanate nanotubes. Physical Chemistry Chemical Physics, 2016, 18, 18081-18093.	2.8	28
17	Removal of rhodamine 6G dye contaminant by visible light driven immobilized Ca1â¿¿Ln MnO3 (Ln = Sm, Ho;) Tj E	ETQq1 1 0).784314 rg <mark>B</mark>
18	Synthesis of titanate nanofibers co-sensitized with ZnS and Bi 2 S 3 nanocrystallites and their application on pollutants removal. Materials Research Bulletin, 2015, 72, 20-28.	5.2	20

#	Article	IF	CITATION
19	Hierarchically Grown CaMn ₃ O ₆ Nanorods by RF Magnetron Sputtering for Enhanced Visible-Light-Driven Photocatalysis. Journal of Physical Chemistry C, 2014, 118, 24127-24135.	3.1	16
20	Visible-Light Photocatalysis in Ca _{0.6} Ho ₀ _{.4} MnO ₃ Films Deposited by RF-Magnetron Sputtering Using Nanosized Powder Compacted Target. Journal of Physical Chemistry C, 2014, 118, 590-597.	3.1	17
21	Characterization and electrochemical behaviour of nanostructured calcium samarium manganite electrodes fabricated by RF-Magnetron Sputtering. Electrochimica Acta, 2014, 137, 99-107.	5.2	7
22	Photocatalytic activity and reusability study of nanocrystalline TiO2 films prepared by sputtering technique. Applied Surface Science, 2013, 264, 111-116.	6.1	49