Luigi Fabbrizzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3697335/publications.pdf

Version: 2024-02-01

125	12,034	55	109
papers	citations	h-index	g-index
137	137	137	8213
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Electrochemically Driven Swinging of a Nitrobenzyl Pendant Arm in a Nickel Scorpionand Complex. Chemistry - A European Journal, 2022, , .	1.7	2
2	Beyond the Molecule: Intermolecular Forces from Gas Liquefaction to Xâ^'Hâ‹â‹â‹i€ Hydrogen Bonds. ChemPlusChem, 2021, , .	1.3	4
3	The ferrocenium/ferrocene couple: a versatile redox switch. ChemTexts, 2020, 6, 1.	1.0	42
4	Beauty in Chemistry: Making Artistic Molecules with Schiff Bases. Journal of Organic Chemistry, 2020, 85, 12212-12226.	1.7	63
5	The origins of the coordination chemistry of alkali metal ions. ChemTexts, 2020, 6, 1.	1.0	15
6	Strange Case of Signor Volta and Mister Nicholson: How Electrochemistry Developed as a Consequence of an Editorial Misconduct. Angewandte Chemie, 2019, 131, 5868-5880.	1.6	3
7	Strange Case of Signor Volta and Mister Nicholson: How Electrochemistry Developed as a Consequence of an Editorial Misconduct. Angewandte Chemie - International Edition, 2019, 58, 5810-5822.	7.2	16
8	Anion Recognition in Water, Including Sulfate, by a Bicyclam Bimetallic Receptor: A Process Governed by the Enthalpy/Entropy Compensatory Relationship. Chemistry - A European Journal, 2018, 24, 5659-5666.	1.7	13
9	Anion-induced isomerization of fluorescent semi(thio)carbazones. Organic Chemistry Frontiers, 2018, 5, 391-397.	2.3	7
10	Bimacrocyclic Effect in Anion Recognition by a Copper(II) Bicyclam Complex. ACS Omega, 2018, 3, 15692-15701.	1.6	2
11	Anion Binding by Dimetallic Nickel(II) and Nickel(III) Complexes of a Face-to-Face Bicyclam: Looking for a Bimacrocyclic Effect. Inorganic Chemistry, 2016, 55, 2946-2959.	1.9	3
12	The interaction of Mozobil ^{â,,¢} with carboxylates. Organic and Biomolecular Chemistry, 2016, 14, 905-912.	1.5	6
13	Bistren cryptands and cryptates: versatile receptors for anion inclusion and recognition in water. Organic and Biomolecular Chemistry, 2015, 13, 3510-3524.	1.5	48
14	Copper(II) Complexes of Cyclams Containing Nitrophenyl Substituents: Push–Pull Behavior and Scorpionate Coordination of the Nitro Group. Inorganic Chemistry, 2015, 54, 10197-10207.	1.9	8
15	Kinetic Buffers. ChemPhysChem, 2015, 16, 85-89.	1.0	2
16	The Disproportionation of [Ni(tacn)]2+in Ni2+and [Ni(tacn)2]2+Crystallographically Demonstrated (tacn=1,4,7-Triazacyclononane). Chemistry - A European Journal, 2014, 20, 11994-11998.	1.7	1
17	Double-stranded dimetallic helicates: assembling–disassembling driven by the Cu ^I /Cu ^{II} redox change and the principle of homochiral recognition. Chemical Society Reviews, 2014, 43, 1835-1847.	18.7	75
18	Anion receptors containing coordinatively unsaturated metal ions: copper(II) complexes with cyclam derivatives. Canadian Journal of Chemistry, 2014, 92, 794-802.	0.6	6

#	Article	IF	Citations
19	Anion recognition by coordinative interactions: metal–amine complexes as receptors. Chemical Society Reviews, 2013, 42, 1681-1699.	18.7	126
20	Enhancing the Anion Affinity of Urea-Based Receptors with a Ru(terpy) ₂ ²⁺ Chromophore. Inorganic Chemistry, 2013, 52, 5273-5283.	1.9	37
21	The Interaction of Fluoride with Fluorogenic Ureas: An ON ¹ –OFF–ON ² Response. Journal of the American Chemical Society, 2013, 135, 6345-6355.	6.6	113
22	An Automatic Molecular Dispenser of Chloride. Chemistry - A European Journal, 2013, 19, 3729-3734.	1.7	8
23	Living in a Cage Is a Restricted Privilege. Topics in Current Chemistry, 2011, 323, 127-166.	4.0	10
24	Putting the Anion into the Cage – Fluoride Inclusion in the Smallest Trisimidazolium Macrotricycle. European Journal of Organic Chemistry, 2011, 2011, 6434-6444.	1.2	38
25	Ureaâ€, Squaramideâ€, and Sulfonamideâ€Based Anion Receptors: A Thermodynamic Study. Chemistry - A European Journal, 2011, 17, 5972-5981.	1.7	95
26	Moderate and Advanced Intramolecular Proton Transfer in Urea–Anion Hydrogenâ€Bonded Complexes. Chemistry - A European Journal, 2011, 17, 9423-9439.	1.7	45
27	The Squaramide versus Urea Contest for Anion Recognition. Chemistry - A European Journal, 2010, 16, 4368-4380.	1.7	172
28	Template synthesis of azacyclam metal complexes using primary amides as locking fragments. Coordination Chemistry Reviews, 2010, 254, 1628-1636.	9.5	41
29	Recognition and Sensing of Nucleoside Monophosphates by a Dicopper(II) Cryptate. Journal of the American Chemical Society, 2010, 132, 147-156.	6.6	100
30	Anion recognition by hydrogen bonding: urea-based receptors. Chemical Society Reviews, 2010, 39, 3889.	18.7	624
31	Templated Synthesis of Copper(II) Azacyclam Complexes Using Urea as a Locking Fragment and Their Metalâ€Enhanced Binding Tendencies towards Anions. Chemistry - A European Journal, 2009, 15, 11288-11297.	1.7	20
32	Anion receptors that contain metals as structural units. Chemical Communications, 2009, , 513-531.	2.2	219
33	Metalâ€Controlled Anionâ€Binding Tendencies of the Thiourea Unit of Thiosemicarbazones. Chemistry - A European Journal, 2008, 14, 9683-9696.	1.7	28
34	A hybrid molecular machine. Tetrahedron, 2008, 64, 8318-8323.	1.0	8
35	Halide ion inclusion into a dicopper(II) bistren cryptate containing †active†2,5-dimethylfuran spacers: The origin of the bright yellow colour. Inorganica Chimica Acta, 2008, 361, 4038-4046.	1.2	14
36	Communicating about Matter with Symbols: Evolving from Alchemy to Chemistry. Journal of Chemical Education, 2008, 85, 1501.	1.1	16

#	Article	IF	Citations
37	Redox Active Cage for the Electrochemical Sensing of Anions. Inorganic Chemistry, 2008, 47, 4808-4816.	1.9	41
38	Homo- and Hetero-Dinuclear Anion Complexes. Chemistry - A European Journal, 2007, 13, 3787-3795.	1.7	30
39	Redox-Driven Intramolecular Anion Translocation between a Metal Centre and a Hydrogen-Bond-Donating Compartment. Chemistry - A European Journal, 2007, 13, 4988-4997.	1.7	20
40	The template synthesis of dimetallic complexes. Inorganica Chimica Acta, 2007, 360, 1163-1169.	1.2	3
41	What Anions Do to Nâ^H-Containing Receptors. Accounts of Chemical Research, 2006, 39, 343-353.	7.6	764
42	Metal-Controlled Assembly and Selectivity of a Urea-Based Anion Receptor. Inorganic Chemistry, 2006, 45, 6138-6147.	1.9	70
43	Light-emitting molecular devices based on transition metals. Coordination Chemistry Reviews, 2006, 250, 273-299.	9.5	318
44	Some guidelines for the design of anion receptors. Coordination Chemistry Reviews, 2006, 250, 1451-1470.	9.5	239
45	A Metal-Based Trisimidazolium Cage That Provides Six CH Hydrogen-Bond-Donor Fragments and Includes Anions. Angewandte Chemie - International Edition, 2006, 45, 6920-6924.	7.2	114
46	(Benzylideneamino)thioureas – Chromogenic Interactions with Anions and N–H Deprotonation. European Journal of Organic Chemistry, 2006, 2006, 3567-3574.	1.2	118
47	Molecular Devices Based on Metallocyclam Subunits. Advances in Inorganic Chemistry, 2006, 59, 81-107.	0.4	11
48	Anion Receptors Containing -NH Binding Sites: Hydrogen-Bond Formation or Neat Proton Transfer?. Chemistry - A European Journal, 2005, 11, 120-127.	1.7	103
49	Anion-Induced Urea Deprotonation. Chemistry - A European Journal, 2005, 11, 3097-3104.	1.7	251
50	What Anions Do Inside a Receptor's Cavity: A Trifurcate Anion Receptor Providing Both Electrostatic and Hydrogen-Bonding Interactions. Chemistry - A European Journal, 2005, 11, 5648-5660.	1.7	107
51	Metal-Containing Trifurcate Receptor that Recognizes and Senses Citrate in Water. Organic Letters, 2005, 7, 2603-2606.	2.4	91
52	Urea vs. thiourea in anion recognition. Organic and Biomolecular Chemistry, 2005, 3, 1495-1500.	1.5	333
53	Dramatically Enhanced Carbon Acidity of the Nitrobenzyl Fragment in a Nickel(II) Scorpionate Complex. Organic Letters, 2005, 7, 3417-3420.	2.4	12
54	Chiral receptors for phosphate ions. Organic and Biomolecular Chemistry, 2005, 3, 2632.	1.5	91

#	Article	IF	CITATIONS
55	Why, on Interaction of Urea-Based Receptors with Fluoride, Beautiful Colors Develop. Journal of Organic Chemistry, 2005, 70, 5717-5720.	1.7	478
56	Metal-Enhanced H-Bond Donor Tendencies of Urea and Thiourea toward Anions:  Ditopic Receptors for Silver(I) Salts. Inorganic Chemistry, 2005, 44, 8690-8698.	1.9	62
57	A Colorimetric Approach to Anion Sensing: A Selective Chemosensor of Fluoride Ions, in which Color is Generated by Anion-Enhancedi€ Delocalization. Angewandte Chemie - International Edition, 2004, 43, 1962-1965.	7.2	211
58	A Dimetallic Cage with a Long Ellipsoidal Cavity for the Fluorescent Detection of Dicarboxylate Anions in Water. Angewandte Chemie - International Edition, 2004, 43, 3847-3852.	7.2	135
59	A Sleeping Host Awoken by Its Guest: Recognition and Sensing of Imidazole-Containing Molecules Based on Double Cu2+ Translocation inside a Polyaza Macrocycle. Angewandte Chemie - International Edition, 2004, 43, 5073-5077.	7.2	83
60	A Concave Fluorescent Sensor for Anions Based on 6-Methoxy-1-methylquinolinium. Chemistry - A European Journal, 2004, 10, 76-82.	1.7	39
61	Does a Reinforced Kinetic Macrocyclic Effect Exist? The Demetallation in Strong Acid of Copper(II) Complexes with Open and Cyclic Tetramines Containing a Piperazine Fragment. Chemistry - A European Journal, 2004, 10, 3209-3216.	1.7	17
62	Fluorescent detection of glutamate with a dicopper(II) polyamine cage. Tetrahedron, 2004, 60, 11159-11162.	1.0	67
63	A chromogenic penta-aza scorpionand for nickel(II) and copper(II) ions. Polyhedron, 2004, 23, 373-378.	1.0	13
64	Further insights on the high–low spin interconversion in nickel(ii) tetramine complexes. Solvent and temperature effects. Dalton Transactions, 2004, , 2616-2620.	1.6	34
65	Nature of Ureaâ^Fluoride Interaction:  Incipient and Definitive Proton Transfer. Journal of the American Chemical Society, 2004, 126, 16507-16514.	6.6	790
66	Monitoring the Redox-Driven Assembly/Disassembly of a Dicopper(I) Helicate with an Auxiliary Fluorescent Probe. Inorganic Chemistry, 2003, 42, 1632-1636.	1.9	38
67	Designing the Selectivity of the Fluorescent Detection of Amino Acids:Â A Chemosensing Ensemble for Histidine. Journal of the American Chemical Society, 2003, 125, 20-21.	6.6	229
68	Molecular Motions in the Solid State:  the Thermochromic Nitroâ^'Nitrito Interconversion in Nickel(II) Bis(diamine) Complexes. Inorganic Chemistry, 2003, 42, 664-666.	1.9	30
69	The design of fluorescent sensors for anions: taking profit from the metal–ligand interaction and exploiting two distinct paradigms. Dalton Transactions, 2003, , 3471-3479.	1.6	101
70	Water Soluble Molecular Switches of Fluorescence Based on the NillI/NillRedox Change. Inorganic Chemistry, 2002, 41, 6129-6136.	1.9	33
71	pH-Controlled Fluorescent Emission in the Nickel(II) Complex of a Bifunctional Tetramine Macrocycle. Inorganic Chemistry, 2002, 41, 4612-4614.	1.9	25
72	Coordinative control of photoinduced electron transfer: bulky carboxylates as molecular curtains. Chemical Communications, 2002, , 1348-1349.	2.2	24

#	Article	IF	Citations
73	Title is missing!. Angewandte Chemie, 2002, 114, 2665-2668.	1.6	13
74	Pyrophosphate Detection in Water by Fluorescence Competition Assays: Inducing Selectivity through the Choice of the Indicator. Angewandte Chemie, 2002, 114 , $3965-3968$.	1.6	29
75	Light-Emitting Molecular Machines: pH-Induced Intramolecular Motions in a Fluorescent Nickel(II) Scorpionate Complex. Chemistry - A European Journal, 2002, 8, 4965-4972.	1.7	48
76	Signal Amplification by a Fluorescent Indicator of a pH-Driven Intramolecular Translocation of a Copper(II) Ion. Angewandte Chemie - International Edition, 2002, 41, 2553-2556.	7.2	66
77	Pyrophosphate Detection in Water by Fluorescence Competition Assays: Inducing Selectivity through the Choice of the Indicator. Angewandte Chemie - International Edition, 2002, 41, 3811-3814.	7.2	272
78	A di-copper(II) bis-tren cage with thiophene spacers as receptor for anions in aqueous solution. Inorganica Chimica Acta, 2002, 337, 70-74.	1.2	23
79	A novel fluorescence redox switch based on the formal Nill/Nil couple â€. Dalton Transactions RSC, 2001, , 1671-1675.	2.3	24
80	Molecular rearrangements controlled by pH-driven Cu2+ motions. Dalton Transactions RSC, 2001, , 3528-3533.	2.3	28
81	Zinc(ii) driven intra-molecular electronic energy transfer in a supramolecular assembly held by coordinative interactions. Chemical Communications, 2001, , 825-826.	2.2	10
82	Electrochemical Assembling/Disassembling of Helicates with Hysteresis. Inorganic Chemistry, 2001, 40, 3579-3587.	1.9	74
83	Molecular Machines Based on Metal Ion Translocation. Accounts of Chemical Research, 2001, 34, 488-493.	7.6	232
84	A Chemosensing Ensemble for Selective Carbonate Detection in Water Based on Metal-Ligand Interactions. Angewandte Chemie - International Edition, 2001, 40, 3066-3069.	7.2	137
85	Anion recognition by dimetallic cryptates. Coordination Chemistry Reviews, 2001, 219-221, 821-837.	9.5	138
86	Mechanical Switches of Fluorescence. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2001, 41, 13-18.	1.6	5
87	Halide-Ion Encapsulation by a Flexible Dicopper(II) Bis-Tren Cryptate. Angewandte Chemie - International Edition, 2000, 39, 2917-2920.	7.2	86
88	Searching for new fluorescence switches: naphthalene-containing metal complexes whose emission can be controlled by pH variations. Inorganica Chimica Acta, 2000, 300-302, 453-461.	1.2	11
89	pH-Controlled translocation of Nill within a ditopic receptor bearing an appended anthracene fragment: a mechanical switch of fluorescence. Dalton Transactions RSC, 2000, , 185-189.	2.3	48
90	Molecular events switched by transition metals. Coordination Chemistry Reviews, 1999, 190-192, 649-669.	9.5	112

#	Article	IF	CITATIONS
91	Redox-Driven Intramolecular Anion Translocation between Transition Metal Centres. Chemistry - A European Journal, 1999, 5, 682-690.	1.7	47
92	Electrochemically Controlled Assembling/Disassembling Processes with a Bis-imine Bis-quinoline Ligand and the Cull/Cul Couple. Chemistry - A European Journal, 1999, 5, 3679-3688.	1.7	72
93	Transition Metals as Switches. Accounts of Chemical Research, 1999, 32, 846-853.	7.6	310
94	A fluorescent molecular thermometer based on the nickel(II) high-spin/low-spin interconversion. Chemical Communications, 1999, , 1191-1192.	2.2	119
95	Molecular switches of fluorescence operating through metal centred redox couples. Coordination Chemistry Reviews, 1998, 170, 31-46.	9.5	200
96	Controllable Intramolecular Motions That Generate Fluorescent Signals for a Metal Scorpionate Complex. Angewandte Chemie - International Edition, 1998, 37, 800-802.	7.2	86
97	Electrochemically Switched Anion Translocation in a Multicomponent Coordination Compound. Inorganic Chemistry, 1997, 36, 827-832.	1.9	45
98	A Loose Cage for Transition Metals. Inorganic Chemistry, 1997, 36, 1998-2003.	1.9	16
99	Molekulare Erkennung von Carboxylatâ€Ionen durch Metallâ€Ligandâ€Wechselwirkung und Nachweis durch Fluoreszenzlöschung. Angewandte Chemie, 1996, 108, 224-227.	1.6	18
100	Fluorescent Sensors for Transition Metals Based on Electronâ€Transfer and Energyâ€Transfer Mechanisms. Chemistry - A European Journal, 1996, 2, 75-82.	1.7	267
101	Fluorescence Redox Switching Systems Operating through Metal Centres: the Ni ^{III} /Ni ^{III} Couple. Chemistry - A European Journal, 1996, 2, 1243-1250.	1.7	75
102	Molecular Recognition of Carboxylate Ions Based on the Metal–Ligand Interaction and Signaled through Fluorescence Quenching. Angewandte Chemie International Edition in English, 1996, 35, 202-204.	4.4	318
103	Anion recognition by a dicopper (II) cryptate. Inorganica Chimica Acta, 1995, 238, 5-8.	1.2	53
104	Sensors and switches from supramolecular chemistry. Chemical Society Reviews, 1995, 24, 197.	18.7	723
105	Redox Switching of Anthracene Fluorescence through the Cull/Cul Couple. Inorganic Chemistry, 1995, 34, 3581-3582.	1.9	74
106	Controlling the acidity of the carboxylic group by a ferrocene based redox switch. Inorganica Chimica Acta, 1994, 225, 239-244.	1.2	39
107	Nickel(II) Complexes of Azacyclams: Oxidation and Reduction Behavior and Catalytic Effects in the Electroreduction of Carbon Dioxide. Inorganic Chemistry, 1994, 33, 1366-1375.	1.9	67
108	Nickel(III)-promoted deprotonation of an amide group of cyclam. Characterization of the violet transient through stopped-flow spectrophotometric techniques and determination of the pKA value. Inorganic Chemistry, 1994, 33, 134-139.	1.9	24

#	Article	IF	CITATIONS
109	Appending two non-equivalent ferrocene fragments to a metallocyclam core. Inorganica Chimica Acta, 1993, 214, 193-196.	1.2	8
110	Amides and sulfonamides: efficient molecular padlocks for the template synthesis of azacyclam (1,3,5,8,12-pentaazacyclotetradecane) macrocycles. Journal of the Chemical Society Dalton Transactions, 1993, , 1411.	1.1	26
111	Pyridines with an appended metallocyclam subunit. Versatile building blocks to supramolecular multielectron redox systems. Inorganic Chemistry, 1993, 32, 106-113.	1.9	31
112	Ferrocene derivatives as electron carriers for selective oxidation and reduction reactions through a liquid membrane. Journal of the Chemical Society Dalton Transactions, 1992, , 2219.	1.1	11
113	A redox-switchable ligand for which the binding ability is enhanced by oxidation of its ferrocene unit. Journal of the Chemical Society Dalton Transactions, 1992, , 3283.	1.1	36
114	Selective transport of anions across liquid membranes using the ferrocenium/ferrocene redox couple. Advanced Materials, 1991, 3, 611-613.	11.1	3
115	1-(4-tolylsulfonyl)-1,4,8,11-tetraazacyclotetradecane (Tscyclam): a versatile ligand for nickel(II) and nickel(III) cations. Inorganic Chemistry, 1990, 29, 2964-2970.	1.9	23
116	Design of redox systems for the selective transport of electrons across liquid membranes: nickel(II,III) tetraaza macrocyclic complexes. Journal of the American Chemical Society, 1989, 111, 2422-2427.	6.6	31
117	N-(aminoethyl)cyclam: a tetraaza macrocycle with a coordinating tail (scorpiand). Acidity controlled coordination of the side chain to nickel(II) and nickel(III) cations. Journal of the American Chemical Society, 1987, 109, 5139-5144.	6.6	129
118	Steric effects on the solution chemistry of nickel(II) complexes with N-monomethylated 14-membered tetraaza macrocycles. The blue-to-yellow conversion and the oxidation and reduction behavior. Inorganic Chemistry, 1986, 25, 4131-4135.	1.9	69
119	Trivalent nickel bis(triaza macrocyclic) complexes. Ligand ring size and medium effects on the nickel(III)/nickel(II) redox couple potential. Inorganic Chemistry, 1986, 25, 1456-1461.	1.9	61
120	The Stabilization of High Oxidation States of Metals Through Coordination by Poly-aza Macrocycles. Comments on Inorganic Chemistry, 1985, 4, 33-54.	3.0	75
121	Formation of a trivalent silver tetraaza macrocyclic complex in aqueous solution: hydrolytic tendencies and interaction with the sulfate ion. Inorganic Chemistry, 1985, 24, 3873-3875.	1.9	22
122	Stablization by a strongly acidic medium of trivalent copper tetra-aza macrocyclic complexes. Journal of the Chemical Society Chemical Communications, 1984, , 806.	2.0	24
123	Formation of nickel(III) complexes with n-dentate amine macrocycles (n = 4, 5, 6). ESR and electrochemical studies. Inorganic Chemistry, 1981, 20, 2544-2549.	1.9	90
124	A microcalorimetric determination of the enthalpies of formation in solution of nickel(II) complexes with tetraaza macrocyclic ligands of varying size. Inorganic Chemistry, 1980, 19, 535-538.	1.9	35
125	Fitting of nickel(II) ion into two 14-membered tetraaza macrocycles. Blue-to-yellow conversion and the oxidation and reduction behavior. Inorganic Chemistry, 1979, 18, 438-444.	1.9	111