David H Dockrell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3697226/publications.pdf

Version: 2024-02-01

36203 53109 7,948 121 51 85 citations h-index g-index papers 132 132 132 11420 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Identification of Markers of Macrophage Differentiation in PMA-Stimulated THP-1 Cells and Monocyte-Derived Macrophages. PLoS ONE, 2010, 5, e8668.	1.1	897
2	Macrophage-dependent Apoptosis of CD4+ T Lymphocytes from HIV-infected Individuals Is Mediated by FasL and Tumor Necrosis Factor. Journal of Experimental Medicine, 1997, 185, 55-64.	4.2	241
3	Pyocyanin Production by <i>Pseudomonas aeruginosa</i> Induces Neutrophil Apoptosis and Impairs Neutrophil-Mediated Host Defenses In Vivo. Journal of Immunology, 2005, 174, 3643-3649.	0.4	219
4	Alveolar Macrophage Apoptosis Contributes to Pneumococcal Clearance in a Resolving Model of Pulmonary Infection. Journal of Immunology, 2003, 171, 5380-5388.	0.4	213
5	Toll-Like Receptors in Health and Disease: Complex Questions Remain. Journal of Immunology, 2003, 171, 1630-1635.	0.4	198
6	Acceleration of Human Neutrophil Apoptosis by TRAIL. Journal of Immunology, 2003, 170, 1027-1033.	0.4	164
7	Pneumolysin: A Double-Edged Sword During the Host-Pathogen Interaction. Current Molecular Medicine, 2008, 8, 497-509.	0.6	154
8	Prolyl hydroxylase 3 (PHD3) is essential for hypoxic regulation of neutrophilic inflammation in humans and mice. Journal of Clinical Investigation, 2011, 121, 1053-1063.	3.9	147
9	In vivo analysis of Fas/FasL interactions in HIV-infected patients Journal of Clinical Investigation, 1998, 102, 79-87.	3.9	141
10	Mycophenolate mofetil increases cytomegalovirus invasive organ disease in renal transplant patients. Clinical Transplantation, 2000, 14, 136-138.	0.8	128
11	TNF-related apoptosis-inducing ligand (TRAIL) regulates inflammatory neutrophil apoptosis and enhances resolution of inflammation. Journal of Leukocyte Biology, 2011, 90, 855-865.	1.5	126
12	Hypoxia-inducible factor 2α regulates key neutrophil functions in humans, mice, and zebrafish. Blood, 2014, 123, 366-376.	0.6	124
13	Human herpesvirus-6 and -7 in transplantation. Reviews in Medical Virology, 2001, 11, 23-36.	3.9	122
14	Seroconversion to Human Herpesvirus 6 following Liver Transplantation Is a Marker of Cytomegalovirus Disease. Journal of Infectious Diseases, 1997, 176, 1135-1140.	1.9	121
15	Pneumococcal Pneumonia. Chest, 2012, 142, 482-491.	0.4	116
16	The expression of Fas Ligand by macrophages and its upregulation by human immunodeficiency virus infection Journal of Clinical Investigation, 1998, 101, 2394-2405.	3.9	116
17	Nitric oxide levels regulate macrophage commitment to apoptosis or necrosis during pneumococcal infection. FASEB Journal, 2004, 18, 1126-1128.	0.2	112
18	Alveolar macrophages in pulmonary host defence – the unrecognized role of apoptosis as a mechanisr of intracellular bacterial killing. Clinical and Experimental Immunology, 2013, 174, 193-202.	n 1.1	112

#	Article	IF	CITATIONS
19	Eosinophilia in returning travellers and migrants from the tropics: UK recommendations for investigation and initial management. Journal of Infection, 2010, 60, 1-20.	1.7	109
20	Platelet P2Y ₁₂ Inhibitors Reduce Systemic Inflammation and Its Prothrombotic Effects in an Experimental Human Model. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2562-2570.	1.1	105
21	Inability to sustain intraphagolysosomal killing of <i><scp>Staphylococcus aureus</scp></i> predisposes to bacterial persistence in macrophages. Cellular Microbiology, 2016, 18, 80-96.	1.1	105
22	Fixed-dose combination dolutegravir, abacavir, and lamivudine versus ritonavir-boosted atazanavir plus tenofovir disoproxil fumarate and emtricitabine in previously untreated women with HIV-1 infection (ARIA): week 48 results from a randomised, open-label, non-inferiority, phase 3b study. Lancet HIV, the, 2017, 4, e536-e546.	2.1	101
23	Impairment of Apoptotic Cell Engulfment by Pyocyanin, a Toxic Metabolite ofPseudomonas aeruginosa. American Journal of Respiratory and Critical Care Medicine, 2008, 177, 35-43.	2.5	100
24	British HIV Association and British Infection Association guidelines for the treatment of opportunistic infection in HIVâ€seropositive individuals 2011. HIV Medicine, 2011, 12, 1-5.	1.0	99
25	Fever in returned travellers presenting in the United Kingdom: Recommendations for investigation and initial management. Journal of Infection, 2009, 59, 1-18.	1.7	96
26	Human herpesvirus 6: molecular biology and clinical features. Journal of Medical Microbiology, 2003, 52, 5-18.	0.7	95
27	CD4 Regulates Susceptibility to Fas ligand– and Tumor Necrosis Factor–mediated Apoptosis. Journal of Experimental Medicine, 1998, 187, 711-720.	4.2	89
28	Decreased Alveolar Macrophage Apoptosis Is Associated with Increased Pulmonary Inflammation in a Murine Model of Pneumococcal Pneumonia. Journal of Immunology, 2006, 177, 6480-6488.	0.4	89
29	The clock gene <i>Bmal1</i> inhibits macrophage motility, phagocytosis, and impairs defense against pneumonia. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1543-1551.	3.3	89
30	Dynamic changes in Mcl-1 expression regulate macrophage viability or commitment to apoptosis during bacterial clearance. Journal of Clinical Investigation, 2005, 115, 359-368.	3.9	88
31	THE ROLE OF THE MACROPHAGE IN LUNG DISEASE MEDIATED BY BACTERIA. Experimental Lung Research, 2007, 33, 493-505.	0.5	87
32	Streptococcus pneumoniae–Associated Human Macrophage Apoptosis after Bacterial Internalization via Complement and Fcγ Receptors Correlates with Intracellular Bacterial Load. Journal of Infectious Diseases, 2003, 188, 1119-1131.	1.9	86
33	Defective bacterial phagocytosis is associated with dysfunctional mitochondria in COPD macrophages. European Respiratory Journal, 2019, 54, 1802244.	3.1	86
34	A Cardinal Role for Cathepsin D in Co-Ordinating the Host-Mediated Apoptosis of Macrophages and Killing of Pneumococci. PLoS Pathogens, 2011, 7, e1001262.	2.1	85
35	Interleukin- $1\hat{l}^2$ Regulates CXCL8 Release and Influences Disease Outcome in Response to Streptococcus pneumoniae, Defining Intercellular Cooperation between Pulmonary Epithelial Cells and Macrophages. Infection and Immunity, 2012, 80, 1140-1149.	1.0	85
36	Distinct Cell Death Programs in Monocytes Regulate Innate Responses Following Challenge with Common Causes of Invasive Bacterial Disease. Journal of Immunology, 2010, 185, 2968-2979.	0.4	84

#	Article	IF	CITATIONS
37	Neutrophils Fuel Effective Immune Responses through Gluconeogenesis and Glycogenesis. Cell Metabolism, 2021, 33, 411-423.e4.	7.2	84
38	The long-term sequelae of COVID-19: an international consensus on research priorities for patients with pre-existing and new-onset airways disease. Lancet Respiratory Medicine, the, 2021, 9, 1467-1478.	5.2	84
39	HUMAN HERPESVIRUS 6 SERONEGATIVITY BEFORE TRANSPLANTATION PREDICTS THE OCCURRENCE OF FUNGAL INFECTION IN LIVER TRANSPLANT RECIPIENTS. Transplantation, 1999, 67, 399-403.	0.5	81
40	Human skin commensals augment Staphylococcus aureus pathogenesis. Nature Microbiology, 2018, 3, 881-890.	5.9	80
41	Reactive Oxygen Species Regulate Neutrophil Recruitment and Survival in Pneumococcal Pneumonia. American Journal of Respiratory and Critical Care Medicine, 2008, 177, 887-895.	2.5	76
42	Apoptotic Cell Death in the Pathogenesis of Infectious Diseases. Journal of Infection, 2001, 42, 227-234.	1.7	75
43	Epsteinâ€Barr Virusâ€Induced T Cell Lymphoma in Solid Organ Transplant Recipients. Clinical Infectious Diseases, 1998, 26, 180-182.	2.9	72
44	Prolyl hydroxylase 2 inactivation enhances glycogen storage and promotes excessive neutrophilic responses. Journal of Clinical Investigation, 2017, 127, 3407-3420.	3.9	71
45	Impaired Mitochondrial Microbicidal Responses in Chronic Obstructive Pulmonary Disease Macrophages. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 845-855.	2.5	70
46	HIV and bone disease. Archives of Biochemistry and Biophysics, 2010, 503, 66-77.	1.4	68
47	Subversion of a Lysosomal Pathway Regulating Neutrophil Apoptosis by a Major Bacterial Toxin, Pyocyanin. Journal of Immunology, 2008, 180, 3502-3511.	0.4	67
48	Dynamic changes in Mcl-1 expression regulate macrophage viability or commitment to apoptosis during bacterial clearance. Journal of Clinical Investigation, 2005, 115, 359-368.	3.9	62
49	Hypoxia determines survival outcomes of bacterial infection through HIF-1α–dependent reprogramming of leukocyte metabolism. Science Immunology, 2017, 2, .	5.6	61
50	The Role of Macrophages in the Innate Immune Response to Streptococcus pneumoniae and Staphylococcus aureus. Advances in Microbial Physiology, 2014, 65, 125-202.	1.0	56
51	Neutrophil HIF- $\hat{\Pi}\pm$ stabilization is augmented by mitochondrial ROS produced via the glycerol 3-phosphate shuttle. Blood, 2022, 139, 281-286.	0.6	56
52	Human Herpesvirus 6. Mayo Clinic Proceedings, 1999, 74, 163-170.	1.4	55
53	Granulocyte apoptosis in the pathogenesis and resolution of lung disease. Clinical Science, 2006, 110, 293-304.	1.8	55
54	HIV-1 Infection and the Kidney: An Evolving Challenge in HIV Medicine. Mayo Clinic Proceedings, 2007, 82, 1103-1116.	1.4	53

#	Article	IF	Citations
55	Opsonic Phagocytosis in Chronic Obstructive Pulmonary Disease Is Enhanced by Nrf2 Agonists. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 739-750.	2.5	53
56	Clostridium difficile infection in HIV-seropositive individuals and transplant recipients. Journal of Infection, 2012, 64, 131-147.	1.7	52
57	Targeting the Networks that Underpin Contiguous Immunity in Asthma and Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2007, 175, 306-311.	2.5	51
58	Activation-Induced CD4+ T Cell Death in HIV-Positive Individuals Correlates with Fas Susceptibility, CD4+ T Cell Count, and HIV Plasma Viral Copy Number. AIDS Research and Human Retroviruses, 1999, 15, 1509-1518.	0.5	50
59	Gamma Interferon Enhances Internalization and Early Nonoxidative Killing of Salmonella enterica Serovar Typhimurium by Human Macrophages and Modifies Cytokine Responses. Infection and Immunity, 2005, 73, 3445-3452.	1.0	50
60	Pneumolysin Activates Macrophage Lysosomal Membrane Permeabilization and Executes Apoptosis by Distinct Mechanisms without Membrane Pore Formation. MBio, 2014, 5, e01710-14.	1.8	50
61	<i>Streptococcus pneumoniae</i> worsens cerebral ischemia via interleukin 1 and platelet glycoprotein Ibl±. Annals of Neurology, 2014, 75, 670-683.	2.8	50
62	Differential Effects of p38, MAPK, PI3K or Rho Kinase Inhibitors on Bacterial Phagocytosis and Efferocytosis by Macrophages in COPD. PLoS ONE, 2016, 11, e0163139.	1.1	49
63	Polymersomes Eradicating Intracellular Bacteria. ACS Nano, 2020, 14, 8287-8298.	7.3	47
64	Improved outcomes associated with advances in therapy for invasive fungal infections in immunocompromised hosts. Journal of Infection, 2007, 55, 287-299.	1.7	46
65	Identifying and hurdling obstacles to translational research. Nature Reviews Immunology, 2007, 7, 77-82.	10.6	46
66	Streptococcus pneumoniae: The role of apoptosis in host defense and pathogenesis. International Journal of Biochemistry and Cell Biology, 2006, 38, 1848-1854.	1.2	45
67	Inhibition of Macrophage Apoptosis by Neisseria meningitidis Requires Nitric Oxide Detoxification Mechanisms. Infection and Immunity, 2006, 74, 729-733.	1.0	45
68	Alveolar Macrophage Apoptosis–associated Bacterial Killing Helps Prevent Murine Pneumonia. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 84-97.	2.5	41
69	The multiple roles of Fas ligand in the pathogenesis of infectious diseases. Clinical Microbiology and Infection, 2003, 9, 766-779.	2.8	39
70	Proteomic Evaluation and Validation of Cathepsin D Regulated Proteins in Macrophages Exposed to Streptococcus pneumoniae. Molecular and Cellular Proteomics, 2011, 10, M111.008193.	2.5	39
71	The yin and the yang of immunosuppression with inhaled corticosteroids. Thorax, 2013, 68, 1085-1087.	2.7	39
72	Randomised controlled trial of intravenous nafamostat mesylate in COVID pneumonitis: Phase 1b/2a experimental study to investigate safety, Pharmacokinetics and Pharmacodynamics. EBioMedicine, 2022, 76, 103856.	2.7	38

#	Article	IF	Citations
73	The therapeutic potential of epigenetic manipulation during infectious diseases., 2016, 167, 85-99.		35
74	ÂÂÂÂÂÂÂA type I IFN, prothrombotic hyperinflammatory neutrophil signature is distinct for COVID-19 ARDSÂÂÂ. Wellcome Open Research, 2021, 6, 38.	0.9	35
7 5	HIV gp120 in the Lungs of Antiretroviral Therapy–treated Individuals Impairs Alveolar Macrophage Responses to Pneumococci. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 1604-1615.	2.5	33
76	Deficiency of tumour necrosis factor-related apoptosis-inducing ligand exacerbates lung injury and fibrosis. Thorax, 2012, 67, 796-803.	2.7	31
77	Clostridium Difficile Infection in Patients with HIV/AIDS. Current HIV/AIDS Reports, 2013, 10, 273-282.	1.1	31
78	Mechanistic links between acute respiratory tract infections and acute coronary syndromes. Journal of Infection, 2013, 66, 1-17.	1.7	31
79	ÂÂÂÂÂÂÂA type I IFN, prothrombotic hyperinflammatory neutrophil signature is distinct for COVID-19 ARDSÂÂÂ. Wellcome Open Research, 2021, 6, 38.	0.9	29
80	Group G Streptococcal Bacteraemia: An Opportunistic Infection Associated with Immune Senescence. Scandinavian Journal of Infectious Diseases, 2002, 34, 83-87.	1.5	27
81	Immunogenicity of three Haemophilus influenzae type b protein conjugate vaccines in HIV seropositive adults and analysis of predictors of vaccine response. Vaccine, 1999, 17, 2779-2785.	1.7	25
82	Monocytes Regulate the Mechanism of T-cell Death by Inducing Fas-Mediated Apoptosis during Bacterial Infection. PLoS Pathogens, 2012, 8, e1002814.	2.1	25
83	Virulence factors in pneumococcal respiratory pathogenesis. Future Microbiology, 2008, 3, 205-221.	1.0	24
84	Diesel Exhaust Particle Exposure In Vitro Alters Monocyte Differentiation and Function. PLoS ONE, 2012, 7, e51107.	1.1	24
85	Macrophage Phenotype Is Associated with Disease Severity in Preterm Infants with Chronic Lung Disease. PLoS ONE, 2014, 9, e103059.	1.1	24
86	Regulation of phagocyte lifespan in the lung during bacterial infection. Journal of Leukocyte Biology, 2006, 79, 904-908.	1.5	23
87	The transcription factor EGR2 is indispensable for tissue-specific imprinting of alveolar macrophages in health and tissue repair. Science Immunology, 2021, 6, eabj2132.	5.6	23
88	Roles of neutrophils in the regulation of the extent of human inflammation through delivery of IL-1 and clearance of chemokines. Journal of Leukocyte Biology, 2013, 93, 7-19.	1.5	21
89	Hypoxia shapes the immune landscape in lung injury and promotes the persistence of inflammation. Nature Immunology, 2022, 23, 927-939.	7.0	21
90	Contrasting roles for reactive oxygen species and nitric oxide in the innate response to pulmonary infection with Streptococcus pneumoniae. Vaccine, 2007, 25, 2485-2490.	1.7	20

#	Article	IF	CITATIONS
91	Inhibition of ErbB kinase signalling promotes resolution of neutrophilic inflammation. ELife, 2019, 8, .	2.8	20
92	The burden of invasive pneumococcal disease and the potential for reduction by immunisation. International Journal of Antimicrobial Agents, 2002, 19, 85-93.	1.1	19
93	Apoptosis in AIDS. Advances in Pharmacology, 1997, 41, 271-294.	1.2	18
94	Bacterial size matters: Multiple mechanisms controlling septum cleavage and diplococcus formation are critical for the virulence of the opportunistic pathogen Enterococcus faecalis. PLoS Pathogens, 2017, 13, e1006526.	2.1	18
95	Successful use of Fendrix in HIV-infected non-responders to standard hepatitis B vaccines. Journal of Infection, 2014, 68, 397-399.	1.7	17
96	Pellino-1 Regulates Immune Responses to Haemophilus influenzae in Models of Inflammatory Lung Disease. Frontiers in Immunology, 2019, 10, 1721.	2.2	17
97	Management of MDR-TB in HIV co-infected patients in Eastern Europe: Results from the TB:HIV study. Journal of Infection, 2018, 76, 44-54.	1.7	16
98	The histone methyltransferase <i>Ezh2</i> restrains macrophage inflammatory responses. FASEB Journal, 2021, 35, e21843.	0.2	15
99	Comparison of dataâ€acquisition methods for the identification and quantification of histone postâ€translational modifications on a Q Exactive HF hybrid quadrupole Orbitrap mass spectrometer. Rapid Communications in Mass Spectrometry, 2019, 33, 897-906.	0.7	13
100	Facing new challenges to promote long-term health for people living with HIV. Current Opinion in Infectious Diseases, 2017, 30, 1-3.	1.3	12
101	Pellino-1 Regulates the Responses of the Airway to Viral Infection. Frontiers in Cellular and Infection Microbiology, 2020, 10, 456.	1.8	12
102	A decoy receptor 3 analogue reduces localised defects in phagocyte function in pneumococcal pneumonia. Thorax, 2012, 67, 985-992.	2.7	10
103	Developing Novel Host-Based Therapies Targeting Microbicidal Responses in Macrophages and Neutrophils to Combat Bacterial Antimicrobial Resistance. Frontiers in Immunology, 2020, 11, 786.	2.2	10
104	Hypercalcemia in a Patient With Hypoparathyroidism and Nocardia asteroides Infection: A Novel Observation. Mayo Clinic Proceedings, 1997, 72, 757-760.	1.4	9
105	Evolving controversies and challenges in the management of opportunistic infections in HIV-seropositive individuals. Journal of Infection, 2011, 63, 177-186.	1.7	7
106	The effect of live attenuated influenza vaccine on pneumococcal colonisation densities among children aged 24–59 months in The Gambia: a phase 4, open label, randomised, controlled trial. Lancet Microbe, The, 2021, 2, e656-e665.	3.4	7
107	Analysis of histone post translational modifications in primary monocyte derived macrophages using reverse phase×reverse phase chromatography in conjunction with porous graphitic carbon stationary phase. Journal of Chromatography A, 2016, 1453, 43-53.	1.8	6
108	Pneumolysin Is Responsible for Differential Gene Expression and Modifications in the Epigenetic Landscape of Primary Monocyte Derived Macrophages. Frontiers in Immunology, 2021, 12, 573266.	2.2	6

7

#	Article	IF	CITATIONS
109	Variability in parvovirus B19 IgG levels in intravenous immunoglobulin samples. Diagnostic Microbiology and Infectious Disease, 1996, 26, 133-135.	0.8	5
110	Low concordance with HIV testing guidelines in a retrospective review of intensive care practice. Thorax, 2013, 68, 1072-1074.	2.7	5
111	Streptococcus pneumoniae Interactions with Macrophages and Mechanisms of Immune Evasion. , 2015, , 401-422.		5
112	Glycan–glycan interactions determine Leishmania attachment to the midgut of permissive sand fly vectors. Chemical Science, 2020, 11, 10973-10983.	3.7	4
113	A mathematical model shows macrophages delay Staphylococcus aureus replication, but limitations in microbicidal capacity restrict bacterial clearance. Journal of Theoretical Biology, 2020, 497, 110256.	0.8	4
114	Human Rhinovirus Inhibits Macrophage Phagocytosis of Bacteria in Chronic Obstructive Pulmonary Disease. More Than a Common Cold. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1451-1452.	2.5	2
115	Seroprevalence of parvovirus B19 antibody in HIV positive asymptomatic persons. International Journal of Infectious Diseases, 1997, 2, 99-104.	1.5	1
116	Alveolar Macrophages. , 2013, , 1-48.		1
117	52-Year-Old Man With Shortness of Breath. Mayo Clinic Proceedings, 2000, 75, 417-420.	1.4	0
118	Phagocytosis of <i>Streptococcus pneumoniae </i> ., 2006, , 135-180.		0
119	Editorial: RSV: a new box of delights for an old enemy. Journal of Leukocyte Biology, 2014, 96, 945-947.	1.5	0
120	The Neutrophil., 2007,, 51-73.		0
121	Phagosomal Acidification Is Required to Kill Streptococcus pneumoniae in a Zebrafish Model. Cellular Microbiology, 2022, 2022, 1-13.	1.1	O