Eric G Krause

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3697135/publications.pdf Version: 2024-02-01

FDIC C. KDALISE

#	Article	IF	CITATIONS
1	Targeting angiotensin type-2 receptors located on pressor neurons in the nucleus of the solitary tract to relieve hypertension in mice. Cardiovascular Research, 2022, 118, 883-896.	1.8	9
2	Conditioned social preference and reward value of activating oxytocinâ€receptorâ€expressing ventral tegmental area neurons following repeated daily binge ethanol intake. Alcoholism: Clinical and Experimental Research, 2022, 46, 194-206.	1.4	2
3	Fecal matter transplant from Ace2 overexpressing mice counteracts chronic hypoxiaâ€induced pulmonary hypertension. Pulmonary Circulation, 2022, 12, e12015.	0.8	5
4	Identification and three-dimensional reconstruction of oxytocin receptor expressing astrocytes in the rat and mouse brain. STAR Protocols, 2022, 3, 101160.	0.5	11
5	A Novel Organ-Specific Approach to Selectively Target Sensory Afferents Innervating the Aortic Arch. Frontiers in Physiology, 2022, 13, 841078.	1.3	5
6	Oxytocin and cardiometabolic interoception: Knowing oneself affects ingestive and social behaviors. Appetite, 2022, 175, 106054.	1.8	2
7	Intrahypothalamic effects of oxytocin on PVN CRH neurons in response to acute stress. Current Opinion in Endocrine and Metabolic Research, 2022, , 100382.	0.6	1
8	Identification of Novel Cross-Talk between the Neuroendocrine and Autonomic Stress Axes Controlling Blood Pressure. Journal of Neuroscience, 2021, 41, 4641-4657.	1.7	25
9	Dendritic osmosensors modulate activity-induced calcium influx in oxytocinergic magnocellular neurons of the mouse PVN. ELife, 2021, 10, .	2.8	3
10	Central and peripheral GLP-1 systems independently suppress eating. Nature Metabolism, 2021, 3, 258-273.	5.1	107
11	An Angiotensin-Responsive Connection from the Lamina Terminalis to the Paraventricular Nucleus of the Hypothalamus Evokes Vasopressin Secretion to Increase Blood Pressure in Mice. Journal of Neuroscience, 2021, 41, 1429-1442.	1.7	15
12	Brain angiotensin type-1 and type-2 receptors: cellular locations under normal and hypertensive conditions. Hypertension Research, 2020, 43, 281-295.	1.5	37
13	Brain Angiotensin Type-1 and Type-2 Receptors in Physiological and Hypertensive Conditions: Focus on Neuroinflammation. Current Hypertension Reports, 2020, 22, 48.	1.5	14
14	Gut Pathology and Its Rescue by ACE2 (Angiotensin-Converting Enzyme 2) in Hypoxia-Induced Pulmonary Hypertension. Hypertension, 2020, 76, 206-216.	1.3	41
15	Overexpression of angiotensin converting enzyme 2 reduces anxiety-like behavior in female mice Physiology and Behavior, 2020, 224, 113002.	1.0	9
16	Endogenous oxytocin inhibits hypothalamic corticotrophinâ€releasing hormone neurones following acute hypernatraemia. Journal of Neuroendocrinology, 2020, 32, e12839.	1.2	16
17	Oxytocin treatment for alcoholism: Potential neurocircuitry targets. Neuropharmacology, 2020, 171, 108091.	2.0	14
18	Angiotensin receptor expression revealed by reporter mice and beneficial effects of AT2R agonist in retinal cells. Experimental Eye Research, 2019, 187, 107770.	1.2	7

#	Article	IF	CITATIONS
19	Oxytocin Receptors Are Expressed by Glutamatergic Prefrontal Cortical Neurons That Selectively Modulate Social Recognition. Journal of Neuroscience, 2019, 39, 3249-3263.	1.7	78
20	An anti-CRF antibody suppresses the HPA axis and reverses stress-induced phenotypes. Journal of Experimental Medicine, 2019, 216, 2479-2491.	4.2	7
21	Coupling corticotropin-releasing-hormone and angiotensin converting enzyme 2 dampens stress responsiveness in male mice. Neuropharmacology, 2018, 133, 85-93.	2.0	38
22	Angiotensin II Triggers Peripheral Macrophage-to-Sensory Neuron Redox Crosstalk to Elicit Pain. Journal of Neuroscience, 2018, 38, 7032-7057.	1.7	92
23	Stress-induced corticosterone secretion covaries with working memory in aging. Neurobiology of Aging, 2018, 71, 156-160.	1.5	4
24	Macrophage angiotensin II type 2 receptor triggers neuropathic pain. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8057-E8066.	3.3	107
25	New horizons for future research – Critical issues to consider for maximizing research excellence and impact. Molecular Metabolism, 2018, 14, 53-59.	3.0	3
26	A Unique "Angiotensin-Sensitive―Neuronal Population Coordinates Neuroendocrine, Cardiovascular, and Behavioral Responses to Stress. Journal of Neuroscience, 2017, 37, 3478-3490.	1.7	71
27	Susceptibility or resilience? Prenatal stress predisposes male rats to social subordination, but facilitates adaptation to subordinate status. Physiology and Behavior, 2017, 178, 117-125.	1.0	13
28	Chronic salt-loading reduces basal excitatory input to CRH neurons in the paraventricular nucleus and accelerates recovery from restraint stress in male mice. Physiology and Behavior, 2017, 176, 189-194.	1.0	11
29	Ischemiaâ€responsive protein 94 is a key mediator of ischemic neuronal injuryâ€induced microglial activation. Journal of Neurochemistry, 2017, 142, 908-919.	2.1	6
30	Targeting psychologic stress signaling pathways in Alzheimer's disease. Molecular Neurodegeneration, 2017, 12, 49.	4.4	47
31	Oxytocin receptors are expressed on dopamine and glutamate neurons in the mouse ventral tegmental area that project to nucleus accumbens and other mesolimbic targets. Journal of Comparative Neurology, 2017, 525, 1094-1108.	0.9	109
32	A Single Angiotensin II Hypertensive Stimulus Is Associated with Prolonged Neuronal and Immune System Activation in Wistar-Kyoto Rats. Frontiers in Physiology, 2017, 8, 592.	1.3	38
33	Body Fluid Homeostasis. , 2017, , 211-224.		0
34	The Brain Reninâ^'Angiotensin System. , 2017, , 417-430.		0
35	Post-stroke angiotensin II type 2 receptor activation provides long-term neuroprotection in aged rats. PLoS ONE, 2017, 12, e0180738.	1.1	19
36	Angiotensin type 1a receptors in the paraventricular nucleus of the hypothalamus control cardiovascular reactivity and anxiety-like behavior in male mice. Physiological Genomics, 2016, 48, 667-676.	1.0	30

#	Article	IF	CITATIONS
37	Conditioned stress prevents cue-primed cocaine reinstatement only in stress-responsive rats. Stress, 2016, 19, 406-418.	0.8	14
38	Angiotensin Type-2 Receptors Influence the Activity of Vasopressin Neurons in the Paraventricular Nucleus of the Hypothalamus in Male Mice. Endocrinology, 2016, 157, 3167-3180.	1.4	33
39	Angiotensin-converting enzyme 2 inhibits high-mobility group box 1 and attenuates cardiac dysfunction post-myocardial ischemia. Journal of Molecular Medicine, 2016, 94, 37-49.	1.7	50
40	Cross talk between AT ₁ receptors and Toll-like receptor 4 in microglia contributes to angiotensin II-derived ROS production in the hypothalamic paraventricular nucleus. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H404-H415.	1.5	96
41	Increasing brain angiotensin converting enzyme 2 activity decreases anxiety-like behavior in male mice by activating central Mas receptors. Neuropharmacology, 2016, 105, 114-123.	2.0	91
42	Reporter mouse strain provides a novel look at angiotensin type-2 receptor distribution in the central nervous system. Brain Structure and Function, 2016, 221, 891-912.	1.2	89
43	Hydration and beyond: neuropeptides as mediators of hydromineral balance, anxiety and stress-responsiveness. Frontiers in Systems Neuroscience, 2015, 9, 46.	1.2	20
44	Angiotensin type 2 receptors: blood pressure regulation and end organ damage. Current Opinion in Pharmacology, 2015, 21, 115-121.	1.7	70
45	Adipocyte glucocorticoid receptors mediate fat-to-brain signaling. Psychoneuroendocrinology, 2015, 56, 110-119.	1.3	32
46	Neuroendocrine Function After Hypothalamic Depletion of Glucocorticoid Receptors in Male and Female Mice. Endocrinology, 2015, 156, 2843-2853.	1.4	69
47	Role of neurons and glia in the CNS actions of the renin-angiotensin system in cardiovascular control. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R444-R458.	0.9	52
48	Role of paraventricular nucleusâ€projecting norepinephrine/epinephrine neurons in acute and chronic stress. European Journal of Neuroscience, 2014, 39, 1903-1911.	1.2	52
49	Acute hypernatremia promotes anxiolysis and attenuates stress-induced activation of the hypothalamic–pituitary–adrenal axis in male mice. Physiology and Behavior, 2014, 136, 91-96.	1.0	29
50	Angiotensin Type 1a Receptors in the Paraventricular Nucleus of the Hypothalamus Protect against Diet-Induced Obesity. Journal of Neuroscience, 2013, 33, 4825-4833.	1.7	70
51	Neuroimmune communication in hypertension and obesity: A new therapeutic angle?. , 2013, 138, 428-440.		41
52	Acute Hypernatremia Exerts an Inhibitory Oxytocinergic Tone That Is Associated With Anxiolytic Mood in Male Rats. Endocrinology, 2013, 154, 2457-2467.	1.4	25
53	Smooth Muscle LDL Receptor-Related Protein-1 Deletion Induces Aortic Insufficiency and Promotes Vascular Cardiomyopathy in Mice. PLoS ONE, 2013, 8, e82026.	1.1	13
54	Amylin blunts hyperphagia and reduces weight and fat gain during recovery in socially stressed rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 303, R676-R682.	0.9	16

#	Article	IF	CITATIONS
55	Identification of chronic stressâ€activated regions reveals a potential recruited circuit in rat brain. European Journal of Neuroscience, 2012, 36, 2547-2555.	1.2	85
56	Central melanocortins modulate mesocorticolimbic activity and food seeking behavior in the rat. Physiology and Behavior, 2011, 102, 491-495.	1.0	42
57	Opposing effects of chronic stress and weight restriction on cardiovascular, neuroendocrine and metabolic function. Physiology and Behavior, 2011, 104, 228-234.	1.0	59
58	Hydration State Controls Stress Responsiveness and Social Behavior. Journal of Neuroscience, 2011, 31, 5470-5476.	1.7	76
59	Blood-Borne Angiotensin II Acts in the Brain to Influence Behavioral and Endocrine Responses to Psychogenic Stress. Journal of Neuroscience, 2011, 31, 15009-15015.	1.7	65
60	Central angiotensin II has catabolic action at white and brown adipose tissue. American Journal of Physiology - Endocrinology and Metabolism, 2011, 301, E1081-E1091.	1.8	62
61	Nongenomic Actions of Adrenal Steroids in the Central Nervous System. Journal of Neuroendocrinology, 2010, 22, 846-861.	1.2	56
62	Pleasurable behaviors reduce stress via brain reward pathways. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20529-20534.	3.3	175
63	Meal patterns and hypothalamic NPY expression during chronic social stress and recovery. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 299, R813-R822.	0.9	40
64	Acute exposure to a high-fat diet alters meal patterns and body composition. Physiology and Behavior, 2010, 99, 33-39.	1.0	61
65	Post-ingestive signals and satiation of water and sodium intake of male rats. Physiology and Behavior, 2010, 99, 657-662.	1.0	10
66	The renin angiotensin system and the metabolic syndrome. Physiology and Behavior, 2010, 100, 525-534.	1.0	165
67	The Effect of Angiotensin-Converting Enzyme Inhibition Using Captopril on Energy Balance and Glucose Homeostasis. Endocrinology, 2009, 150, 4114-4123.	1.4	74
68	Angiotensin Type 1 Receptors in the Subfornical Organ Mediate the Drinking and Hypothalamic-Pituitary-Adrenal Response to Systemic Isoproterenol. Endocrinology, 2008, 149, 6416-6424.	1.4	60
69	Richter and sodium appetite: From adrenalectomy to molecular biology. Appetite, 2007, 49, 353-367.	1.8	44
70	Oestrogen affects the cardiovascular and central responses to isoproterenol of female rats. Journal of Physiology, 2007, 582, 435-447.	1.3	17
71	Oestrogen and weight loss decrease isoproterenol-induced Fos immunoreactivity and angiotensin type 1 mRNA in the subfornical organ of female rats. Journal of Physiology, 2006, 573, 251-262.	1.3	40
72	Gestational and early postnatal dietary NaCl levels affect NaCl intake, but not stimulated water intake, by adult rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 286, R1043-R1050.	0.9	33

#	Article	IF	CITATIONS
73	Estrogen influences stimulated water intake by ovariectomized female rats. Physiology and Behavior, 2003, 79, 267-274.	1.0	64
74	Cardiovascular function and circadian patterns in rats after area postrema lesions or prolonged food restriction. Neuroscience Letters, 2003, 350, 46-50.	1.0	6
75	Fos expression in non-catecholaminergic neurons in medullary and pontine nuclei after volume depletion induced by polyethylene glycol. Brain Research, 2002, 948, 149-154.	1.1	13
76	Altered NaCl taste responses precede increased NaCl ingestion during Na+ deprivation. Physiology and Behavior, 2001, 72, 743-749.	1.0	28