Flavio Alves Lara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3696836/publications.pdf

Version: 2024-02-01

516561 477173 30 931 16 29 citations h-index g-index papers 31 31 31 1287 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Modulation of lipid droplets by Mycobacterium leprae in Schwann cells: a putative mechanism for host lipid acquisition and bacterial survival in phagosomes. Cellular Microbiology, 2011, 13, 259-273.	1.1	131
2	A new intracellular pathway of haem detoxification in the midgut of the cattle tick Boophilus microplus: aggregation inside a specialized organelle, the hemosome. Journal of Experimental Biology, 2003, 206, 1707-1715.	0.8	107
3	Statins Increase Rifampin Mycobactericidal Effect. Antimicrobial Agents and Chemotherapy, 2014, 58, 5766-5774.	1.4	85
4	Congenital Zika syndrome is associated with maternal protein malnutrition. Science Advances, 2020, 6, eaaw6284.	4.7	55
5	ATP Binding Cassette Transporter Mediates Both Heme and Pesticide Detoxification in Tick Midgut Cells. PLoS ONE, 2015, 10, e0134779.	1.1	50
6	STING-Dependent 2′-5′ Oligoadenylate Synthetase–Like Production Is Required for IntracellularMycobacterium lepraeSurvival. Journal of Infectious Diseases, 2016, 214, 311-320.	1.9	44
7	Subversion of Schwann Cell Glucose Metabolism by Mycobacterium leprae. Journal of Biological Chemistry, 2016, 291, 21375-21387.	1.6	41
8	PGL I expression in live bacteria allows activation of a CD206/PPARγ cross-talk that may contribute to successful Mycobacterium leprae colonization of peripheral nerves. PLoS Pathogens, 2018, 14, e1007151.	2.1	34
9	Type I Interferons, Autophagy and Host Metabolism in Leprosy. Frontiers in Immunology, 2018, 9, 806.	2.2	32
10	Indoleamine 2,3-dioxygenase and iron are required for Mycobacterium leprae survival. Microbes and Infection, 2017, 19, 505-514.	1.0	30
11	Involvement of political and socio-economic factors in the spatial and temporal dynamics of COVID-19 outcomes in Brazil: A population-based study. The Lancet Regional Health Americas, 2022, 10, 100221.	1.5	29
12	The cyanobacterial saxitoxin exacerbates neural cell death and brain malformations induced by Zika virus. PLoS Neglected Tropical Diseases, 2020, 14, e0008060.	1.3	28
13	Ticks as potential vectors of Mycobacterium leprae: Use of tick cell lines to culture the bacilli and generate transgenic strains. PLoS Neglected Tropical Diseases, 2018, 12, e0007001.	1.3	26
14	DNA Sensing via TLR-9 Constitutes a Major Innate Immunity Pathway Activated during Erythema Nodosum Leprosum. Journal of Immunology, 2016, 197, 1905-1913.	0.4	25
15	A physiologic overview of the organ-specific transcriptome of the cattle tick Rhipicephalus microplus. Scientific Reports, 2020, 10, 18296.	1.6	23
16	Experimental Infection of Rhodnius prolixus (Hemiptera, Triatominae) with Mycobacterium leprae Indicates Potential for Leprosy Transmission. PLoS ONE, 2016, 11, e0156037.	1.1	23
17	Reduction of host cell mitochondrial activity as <i>Mycobacterium leprae's</i> strategy to evade host innate immunity. Immunological Reviews, 2021, 301, 193-208.	2.8	18
18	New insights into the pathogenesis of leprosy: contribution of subversion of host cell metabolism to bacterial persistence, disease progression, and transmission. F1000Research, 2020, 9, 70.	0.8	17

#	Article	IF	CITATIONS
19	Intracellular Mycobacterium leprae Utilizes Host Glucose as a Carbon Source in Schwann Cells. MBio, 2019, 10, .	1.8	16
20	Lifelong Exposure to a Low-Dose of the Glyphosate-Based Herbicide RoundUp® Causes Intestinal Damage, Gut Dysbiosis, and Behavioral Changes in Mice. International Journal of Molecular Sciences, 2022, 23, 5583.	1.8	16
21	Involvement of 9-O-Acetyl GD3 Ganglioside in Mycobacterium leprae Infection of Schwann Cells*. Journal of Biological Chemistry, 2010, 285, 34086-34096.	1.6	15
22	A Promising Antiprion Trimethoxychalcone Binds to the Globular Domain of the Cellular Prion Protein and Changes Its Cellular Location. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	15
23	Blood coagulation abnormalities in multibacillary leprosy patients. PLoS Neglected Tropical Diseases, 2018, 12, e0006214.	1.3	14
24	Mycobacterium leprae downregulates the expression of PHEX in Schwann cells and osteoblasts. Memorias Do Instituto Oswaldo Cruz, 2010, 105, 627-632.	0.8	11
25	Myelin breakdown favours <i>Mycobacterium leprae</i> survival in Schwann cells. Cellular Microbiology, 2020, 22, e13128.	1.1	11
26	Fluorescent membrane markers elucidate the association of Borrelia burgdorferi with tick cell lines. Brazilian Journal of Medical and Biological Research, 2016, 49, .	0.7	9
27	Role of TEFFECTOR/MEMORY Cells, TBX21 Gene Expression and T-Cell Homing Receptor on Type 1 Reaction in Borderline Lepromatous Leprosy Patients. PLoS ONE, 2016, 11, e0164543.	1.1	5
28	Miniemulsion RAFT Copolymerization of MMA with Acrylic Acid and Methacrylic Acid and Bioconjugation with BSA. Nanomaterials, 2019, 9, 828.	1.9	5
29	Modulation of the Response to Mycobacterium leprae and Pathogenesis of Leprosy. Frontiers in Microbiology, 2022, 13, .	1.5	5
30	Increased oxidative stress in elderly leprosy patients is related to age but not to bacillary load. PLoS Neglected Tropical Diseases, 2021, 15, e0009214.	1.3	2