Giorgio Sulligoi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3696697/publications.pdf

Version: 2024-02-01

		567281	552781
73	1,548	15	26
papers	citations	h-index	g-index
72	72	70	1120
73	73	73	1129
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Next-Generation Shipboard DC Power System: Introduction Smart Grid and dc Microgrid Technologies into Maritime Electrical Netowrks. IEEE Electrification Magazine, 2016, 4, 45-57.	1.8	255
2	Multiconverter Medium Voltage DC Power Systems on Ships: Constant-Power Loads Instability Solution Using Linearization via State Feedback Control. IEEE Transactions on Smart Grid, 2014, 5, 2543-2552.	9.0	197
3	All-Electric Ship Design: From Electrical Propulsion to Integrated Electrical and Electronic Power Systems. IEEE Transactions on Transportation Electrification, 2016, 2, 507-521.	7.8	184
4	Power Flow Control and Network Stability in an All-Electric Ship. Proceedings of the IEEE, 2015, 103, 2355-2380.	21.3	74
5	Shore-to-Ship Power. Proceedings of the IEEE, 2015, 103, 2381-2400.	21.3	69
6	Shipboard Power Generation: Design and Development of a Medium-Voltage dc Generation System. IEEE Industry Applications Magazine, 2013, 19, 47-55.	0.4	65
7	Adaptive Neural Network-Based Control of a Hybrid AC/DC Microgrid. IEEE Transactions on Smart Grid, 2016, , 1-13.	9.0	55
8	Modeling, Simulation, and Experimental Validation of a Generation System for Medium-Voltage DC Integrated Power Systems. IEEE Transactions on Industry Applications, 2010, 46, 1304-1310.	4.9	48
9	Linearizing control of shipboard multi-machine MVDC power systems feeding Constant Power Loads. , 2012, , .		45
10	The Role of Voltage Controls in Modern All-Electric Ships: Toward the all electric ship. IEEE Electrification Magazine, 2015, 3, 49-65.	1.8	44
11	Voltage Stability in Large Marine-Integrated Electrical and Electronic Power Systems. IEEE Transactions on Industry Applications, 2016, 52, 3584-3594.	4.9	35
12	DC Shipboard Microgrids With Constant Power Loads: A Review of Advanced Nonlinear Control Strategies and Stabilization Techniques. IEEE Transactions on Smart Grid, 2022, 13, 3422-3438.	9.0	32
13	Power electronics for all-electric ships with MVDC power distribution system: An overview. , 2014, , .		27
14	Improving Power Quality in All Electric Ships Using a Voltage and VAR Integrated Regulator., 2007,,.		25
15	Considerations on the design of voltage control for multi-machine MVDC power systems on large ships. , 2013, , .		23
16	A Review on Energy Efficiency in Three Transportation Sectors: Railways, Electrical Vehicles and Marine. Energies, 2020, 13, 2378.	3.1	23
17	An innovative generation control system for improving design and stability of shipboard medium-voltage DC Integrated Power System. , 2009, , .		19
18	An Examination of Mutual Influences Between High-Voltage Shore-Connected Ships and Port Earthing Systems During Phase-to-Ground Faults. IEEE Transactions on Industry Applications, 2012, 48, 1731-1738.	4.9	19

#	Article	IF	Citations
19	Voltage control on a refitted luxury yacht using hybrid electric propulsion and LVDC distribution. , 2013, , .		18
20	Voltage control solutions to face the CPL instability in MVDC shipboard power systems. , 2014, , .		18
21	Design of Zonal Electrical Distribution Systems for Ships and Oil Platforms: Control Systems and Protections. IEEE Transactions on Industry Applications, 2020, 56, 5656-5669.	4.9	17
22	More Electric Vehicles DC power systems: A large signal stability analysis in presence of CPLs fed by floating supply voltage. , $2014, $, .		16
23	Case study of voltage control for MVDC microgrids with constant power loads - Comparison between centralized and decentralized control strategies. , 2016, , .		15
24	Inland Waterway Gas-Fueled Vessels: CASM-Based Electrification of a Pushboat for the European Network. IEEE Transactions on Transportation Electrification, 2016, 2, 607-617.	7.8	15
25	Medium Voltage DC Power Systems on Ships: An Offline Parameter Estimation for Tuning the Controllers' Linearizing Function. IEEE Transactions on Energy Conversion, 2017, 32, 748-758.	5.2	15
26	Dependable design assessment of Integrated Power Systems for All Electric Ships. , 2010, , .		13
27	Stability enhancement in DC distribution systems with constant power controlled converters. , 2012, , .		11
28	The design of a slow-cruising superyacht with zero emission navigation and smart berthing modes. , 2014, , .		10
29	Automatic voltage and reactive power control in distribution systems: Dynamic coupling analysis. , 2016, , .		10
30	Environmental Assessment and Regulatory Aspects of Cold Ironing Planning for a Maritime Route in the Adriatic Sea. Energies, 2021, 14, 5836.	3.1	10
31	Open Challenges in Future Electric Ship Design: High-Frequency Disturbance Propagation in Integrated Power and Energy Systems on Ships. IEEE Electrification Magazine, 2019, 7, 98-110.	1.8	9
32	Enhanced power quality and minimized peak current control in an inverter based microgrid under unbalanced grid faults., 2016,,.		8
33	Analysis of small-signal voltage stability for a reduced-order cascade-connected MVDC power system. , 2017, , .		8
34	Weighted Bandwidth Method for Stability Assessment of Complex DC Power Systems on Ships. Energies, 2022, 15, 258.	3.1	8
35	New IEEE & IEC standards for ships and oil platforms. , 2014, , .		7
36	Standards for Ships and Oil Platforms: A Review of the Latest from the IEEE and IEC. IEEE Industry Applications Magazine, 2016, 22, 20-27.	0.4	7

#	Article	IF	Citations
37	Real-time monitoring and control system for Trieste University Campus electrical distribution grid. , 2019, , .		6
38	Electrical and Energy Systems Integration for Maritime Environment-Friendly Transportation. Energies, 2021, 14, 7240.	3.1	6
39	Limiting hull touch voltages in large power shore connection systems during phase-to-ground faults: A solution proposal. , 2013, , .		5
40	Influence of DC-DC load converter control bandwidth on small-signal voltage stability in MVDC power systems. , 2016, , .		5
41	A Stability Preserving Criterion for the Management of DC Microgrids Supplied by a Floating Bus. Applied Sciences (Switzerland), 2018, 8, 2102.	2.5	5
42	A Multi-Model Methodology for Stability Assessment of Complex DC Microgrids. , 2021, , .		5
43	Environment-friendliness in Maritime Transport: Designing Smart Recharging Stations in North Adriatic Sea., 2020,,.		5
44	Guest Editorial Marine Systems Electrification. IEEE Transactions on Transportation Electrification, 2016, 2, 504-506.	7.8	4
45	Increasing the Safety of Modern Passenger Ships: A Comprehensive Approach for Designing Safe Shipboard Integrated Electrical Power Systems. IEEE Electrification Magazine, 2017, 5, 40-54.	1.8	4
46	Modeling and Analysis of the Port of Trieste Electrical Distribution System. , 2018, , .		4
47	A Coordinated Voltage and Reactive Power Control Architecture for Large PV Power Plants. Energies, 2020, 13, 2441.	3.1	4
48	Feasibility Study of a DC Hybrid-Electric Catamaran for River Navigation., 2021,,.		4
49	Enhanced partial frequency variation starting of hydroelectric pumping units: Model based design and experimental validation. International Journal of Electrical Power and Energy Systems, 2021, 131, 107083.	5.5	4
50	The Photovoltaic Laboratory at the University of Trieste, Italy. , 2014, , .		3
51	Voltage stability in large marine integrated electrical and electronic power systems. , 2015, , .		3
52	Robust voltage control in large multi-converter MVDC power systems on ships using thyristor interface converters. , 2017 , , .		3
53	Electric Shaft Starting Sequence for Synchronous Generator in Hydroelectric Pumped Storage Station using Smart Exciter., 2018, , .		3
54	Open Source Hardware in the Loop Real-time Simulation of Zonal DC systems. , 2022, , .		3

#	Article	CITATIONS
55	Simplified analytical modeling and experimental validation of diode bridge rectifier operation during rail-to-rail short-circuit faults in synchronous generator-fed DC distribution systems. , 2017, , .	2
56	Energy control in all-electric ship: State of the art and IoT perspectives. , 2017, , .	2
57	Power-Electronics-Based Power Distribution System of a MVDC Ship: AC/DC Interface Converters and Control System. , 2018, , .	2
58	A frequency analysis of the small-signal voltage model of a MVDC power system with two cascade DC-DC converters. , 2018, , .	2
59	Design of Zonal Electrical Distribution Systems for Ships & Oil Platforms: Control Systems and Protections., 2019,,.	2
60	Protections in a MW-scale DC ZEDS based on COTS components. , 2021, , .	2
61	Synchronous generators for all electric cruise liners: Evolution, requirements and future trends. , 2010, , .	1
62	Evolution of the main economic parameters for photovoltaic plants installed in Italy., 2014, , .	1
63	Medium Voltage DC Power Systems on Ships: an Off-line Parameter Estimation for Tuning the Controllers' Linearizing Function. , 2018, , .	1
64	Assessment of an Alpine Microgrid in a Ski Resort for Integrating RES and Electrical Mobility. , 2020, , .	1
65	Active Damping Poles Repositioning for DC Shipboard Microgrids Control. , 2021, , .	1
66	HIL Virtual Prototyping of a DC Shipboard Microgrid. , 2021, , .	1
67	Assessment of photovoltaic systems for electric power generation using EROEI (energy return on) Tj ETQq1 1 0.784314	rgBT/Overlock
68	An Analysis of the Small-Signal Voltage Stability in MVDC Power Systems with Two Cascade Controlled DC-DC Converters. , 2018, , .	0
69	Early Design of AC/DC Interface Converters and Control System for a MW-Scale MVDC Shipboard Power System. , 2018, , .	O
70	Dependability Analysis of a Digital Excitation Control System. , 2020, , .	0
71	Evolution of an Alpine Ski-Resort Distribution System towards Microgrid. IEEE Transactions on Industry Applications, 2021, , 1-1.	O
72	Study on the State Feedback Selection and Measurement for the Application of an LQRI Secondary Voltage Regulator to a Transmission System. , 2022, , .	0

ARTICLE IF CITATIONS

73 Comparison Between Ring and Radial Configurations of the University of Trieste Campus MV Obstribution Grid., 2022,,...