Moussa Benhamed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3696378/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361, .	12.6	2,424
2	The transcriptional landscape of polyploid wheat. Science, 2018, 361, .	12.6	768
3	The Rosa genome provides new insights into the domestication of modern roses. Nature Genetics, 2018, 50, 772-777.	21.4	344
4	Noncoding Transcription by Alternative RNA Polymerases Dynamically Regulates an Auxin-Driven Chromatin Loop. Molecular Cell, 2014, 55, 383-396.	9.7	330
5	Arabidopsis GCN5, HD1, and TAF1/HAF2 Interact to Regulate Histone Acetylation Required for Light-Responsive Gene Expression. Plant Cell, 2006, 18, 2893-2903.	6.6	302
6	Splicing regulation by long noncoding RNAs. Nucleic Acids Research, 2018, 46, 2169-2184.	14.5	226
7	ANGUSTIFOLIA3 Binds to SWI/SNF Chromatin Remodeling Complexes to Regulate Transcription during <i>Arabidopsis</i> Leaf Development. Plant Cell, 2014, 26, 210-229.	6.6	219
8	Plant Immunity: From Signaling to Epigenetic Control of Defense. Trends in Plant Science, 2018, 23, 833-844.	8.8	198
9	Whole-genome landscape of Medicago truncatula symbiotic genes. Nature Plants, 2018, 4, 1017-1025.	9.3	192
10	Battles and hijacks: noncoding transcription in plants. Trends in Plant Science, 2015, 20, 362-371.	8.8	176
11	R-Loop Mediated trans Action of the APOLO Long Noncoding RNA. Molecular Cell, 2020, 77, 1055-1065.e4.	9.7	164
12	To die or not to die? Lessons from lesion mimic mutants. Frontiers in Plant Science, 2015, 6, 24.	3.6	157
13	The Plant DNA Damage Response: Signaling Pathways Leading to Growth Inhibition and Putative Role in Response to Stress Conditions. Frontiers in Plant Science, 2019, 10, 653.	3.6	137
14	Genomeâ€scale Arabidopsis promoter array identifies targets of the histone acetyltransferase GCN5. Plant Journal, 2008, 56, 493-504.	5.7	120
15	Thermopriming triggers splicing memory in Arabidopsis. Journal of Experimental Botany, 2018, 69, 2659-2675.	4.8	119
16	Arabidopsis HAF2 Gene Encoding TATA-binding Protein (TBP)-associated Factor TAF1, Is Required to Integrate Light Signals to Regulate Gene Expression and Growth. Journal of Biological Chemistry, 2005, 280, 1465-1473.	3.4	117
17	Modify the Histone to Win the Battle: Chromatin Dynamics in Plant–Pathogen Interactions. Frontiers in Plant Science, 2018, 9, 355.	3.6	106
18	Wheat chromatin architecture is organized in genome territories and transcription factories. Genome Biology, 2020, 21, 104.	8.8	99

Moussa Benhamed

#	Article	IF	CITATIONS
19	LHP1 Regulates H3K27me3 Spreading and Shapes the Three-Dimensional Conformation of the Arabidopsis Genome. PLoS ONE, 2016, 11, e0158936.	2.5	97
20	Ethylene induced plant stress tolerance by Enterobacter sp. SA187 is mediated by 2â€ketoâ€4â€methylthiobutyric acid production. PLoS Genetics, 2018, 14, e1007273.	3.5	95
21	The MYST histone acetyltransferases are essential for gametophyte development in Arabidopsis. BMC Plant Biology, 2008, 8, 121.	3.6	90
22	The BAF60 Subunit of the SWI/SNF Chromatin-Remodeling Complex Directly Controls the Formation of a Gene Loop at <i>FLOWERING LOCUS C</i> in <i>Arabidopsis</i> Â. Plant Cell, 2014, 26, 538-551.	6.6	82
23	MAPK-triggered chromatin reprogramming by histone deacetylase in plant innate immunity. Genome Biology, 2017, 18, 131.	8.8	73
24	The IncRNA APOLO interacts with the transcription factor WRKY42 to trigger root hair cell expansion in response to cold. Molecular Plant, 2021, 14, 937-948.	8.3	72
25	Plant-Specific Histone Deacetylases HDT1/2 Regulate <i>GIBBERELLIN 2-OXIDASE2</i> Expression to Control Arabidopsis Root Meristem Cell Number. Plant Cell, 2017, 29, 2183-2196.	6.6	69
26	Put your 3D glasses on: plant chromatin is on show. Journal of Experimental Botany, 2016, 67, 3205-3221.	4.8	59
27	The <i>Arabidopsis</i> lnc <scp>RNA </scp> <i><scp>ASCO</scp></i> modulates the transcriptome through interaction with splicing factors. EMBO Reports, 2020, 21, e48977.	4.5	57
28	The Polyadenylation Factor Subunit CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR30: A Key Factor of Programmed Cell Death and a Regulator of Immunity in Arabidopsis Â. Plant Physiology, 2014, 165, 732-746.	4.8	54
29	The Arabidopsis SWI/SNF protein BAF60 mediates seedling growth control by modulating DNA accessibility. Genome Biology, 2017, 18, 114.	8.8	53
30	The Polycomb protein <scp>LHP</scp> 1 regulates <i>Arabidopsis thaliana</i> stress responses through the repression of the <scp>MYC</scp> 2â€dependent branch of immunity. Plant Journal, 2019, 100, 1118-1131.	5.7	52
31	Ploidy-dependent changes in the epigenome of symbiotic cells correlate with specific patterns of gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4543-4548.	7.1	50
32	GCN5 modulates salicylic acid homeostasis by regulating H3K14ac levels at the 5′ and 3′ ends of its target genes. Nucleic Acids Research, 2020, 48, 5953-5966.	14.5	44
33	Involvement of Arabidopsis Hexokinase1 in Cell Death Mediated by <i>Myo</i> -Inositol Accumulation. Plant Cell, 2015, 27, 1801-1814.	6.6	42
34	Multiple Functions of Kip-Related Protein5 Connect Endoreduplication and Cell Elongation Â. Plant Physiology, 2013, 161, 1694-1705.	4.8	41
35	Chloroplast Dysfunction Causes Multiple Defects in Cell Cycle Progression in the Arabidopsis <i>crumpled leaf</i> Mutant Â. Plant Physiology, 2014, 166, 152-167.	4.8	37
36	Polycomb-dependent differential chromatin compartmentalization determines gene coregulation in <i>Arabidopsis</i> . Genome Research, 2021, 31, 1230-1244.	5.5	36

Moussa Benhamed

#	Article	IF	CITATIONS
37	Chromatin meets the cell cycle. Journal of Experimental Botany, 2014, 65, 2677-2689.	4.8	35
38	Arabidopsis ATRX Modulates H3.3 Occupancy and Fine-Tunes Gene Expression. Plant Cell, 2017, 29, 1773-1793.	6.6	35
39	A new role for histone demethylases in the maintenance of plant genome integrity. ELife, 2020, 9, .	6.0	33
40	Herboxidiene triggers splicing repression and abiotic stress responses in plants. BMC Genomics, 2017, 18, 260.	2.8	31
41	Chloroplast Activity and 3′phosphadenosine 5′phosphate Signaling Regulate Programmed Cell Death in Arabidopsis. Plant Physiology, 2016, 170, 1745-1756.	4.8	30
42	The quest for epigenetic regulation underlying unisexual flower development in Cucumis melo. Epigenetics and Chromatin, 2017, 10, 22.	3.9	27
43	Function of the Plant DNA Polymerase Epsilon in Replicative Stress Sensing, a Genetic Analysis. Plant Physiology, 2017, 173, 1735-1749.	4.8	26
44	A SWI/SNF Chromatin Remodelling Protein Controls Cytokinin Production through the Regulation of Chromatin Architecture. PLoS ONE, 2015, 10, e0138276.	2.5	25
45	The IncRNA MARS modulates the epigenetic reprogramming of the marneral cluster in response to ABA. Molecular Plant, 2022, 15, 840-856.	8.3	25
46	Evidence for a Role of <i>Arabidopsis</i> CDT1 Proteins in Gametophyte Development and Maintenance of Genome Integrity. Plant Cell, 2012, 24, 2779-2791.	6.6	24
47	A hierarchical transcriptional network activates specific CDK inhibitors that regulate G2 to control cell size and number in Arabidopsis. Nature Communications, 2022, 13, 1660.	12.8	22
48	The plant DNA polymerase theta is essential for the repair of replicationâ€associated DNA damage. Plant Journal, 2021, 106, 1197-1207.	5.7	19
49	Integrative genome-wide analysis reveals the role of WIP proteins in inhibition of growth and development. Communications Biology, 2020, 3, 239.	4.4	16
50	DNA polymerase epsilon is required for heterochromatin maintenance in Arabidopsis. Genome Biology, 2020, 21, 283.	8.8	14
51	Cantaloupe melon genome reveals 3D chromatin features and structural relationship with the ancestral cucurbitaceae karyotype. IScience, 2022, 25, 103696.	4.1	12
52	The Mitochondrial DNA (mtDNA)-Associated Protein SWIB5 Influences mtDNA Architecture and Homologous Recombination. Plant Cell, 2017, 29, tpc.00899.2016.	6.6	11
53	The matrix revolutions: towards the decoding of the plant chromatin three-dimensional reality. Journal of Experimental Botany, 2020, 71, 5129-5147.	4.8	11
54	lmmunity onset alters plant chromatin and utilizes EDA16 to regulate oxidative homeostasis. PLoS Pathogens, 2021, 17, e1009572.	4.7	10

#	Article	IF	CITATIONS
55	CmLHP1 proteins play a key role in plant development and sex determination in melon (<i>Cucumis) Tj ETQq1 1 C</i>).784314 r 5.7	rgBT /Over
56	Sex Determination in Cucumis. Plant Genetics and Genomics: Crops and Models, 2017, , 307-319.	0.3	5
57	New partners for old friends: Plant SWI/SNF complexes. Molecular Plant, 2021, 14, 870-872.	8.3	4
58	Histone modification ChIP-seq on Arabidopsis thaliana plantlets. Bio-protocol, 2021, 11, e4211.	0.4	4
59	Chromatin architecture: A new dimension in the dynamic control of gene expression. Plant Signaling and Behavior, 2016, 11, e1232224.	2.4	1
60	Profiling Developmentally and Environmentally Controlled Chromatin Reprogramming. Methods in Molecular Biology, 2018, 1675, 3-30.	0.9	1
61	Plant Epigenetics: Non-coding RNAs as Emerging Regulators. RNA Technologies, 2017, , 129-147.	0.3	0
62	Three bona fide plant-specific SAGA subunits and their regulatory function. Molecular Plant, 2021, 14, 1033-1035.	8.3	0