Yuxing Leng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3696240/publications.pdf

Version: 2024-02-01

331670 254184 2,138 101 21 43 citations h-index g-index papers 103 103 103 3012 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ultrastable CsPbBr ₃ Perovskite Quantum Dot and Their Enhanced Amplified Spontaneous Emission by Surface Ligand Modification. Small, 2019, 15, e1901173.	10.0	229
2	Robust Subwavelength Single-Mode Perovskite Nanocuboid Laser. ACS Nano, 2018, 12, 5923-5931.	14.6	157
3	Free-electron lasing at 27 nanometres based on a laser wakefield accelerator. Nature, 2021, 595, 516-520.	27.8	151
4	Perovskite CsPb ₂ Br ₅ Microplate Laser with Enhanced Stability and Tunable Properties. Advanced Optical Materials, 2017, 5, 1600788.	7.3	135
5	Enhanced Twoâ€Photonâ€Pumped Emission from In Situ Synthesized Nonblinking CsPbBr ₃ /SiO ₂ Nanocrystals with Excellent Stability. Advanced Optical Materials, 2018, 6, 1700997.	7.3	116
6	Ultrathin, Core–Shell Structured SiO ₂ Coated Mn ²⁺ â€Doped Perovskite Quantum Dots for Bright White Lightâ€Emitting Diodes. Small, 2019, 15, e1900484.	10.0	95
7	Highly Stable Silica-Wrapped Mn-Doped CsPbCl ₃ Quantum Dots for Bright White Light-Emitting Devices. ACS Applied Materials & Interfaces, 2018, 10, 43978-43986.	8.0	91
8	Bacterially synthesized tellurium nanostructures for broadband ultrafast nonlinear optical applications. Nature Communications, 2019, 10, 3985.	12.8	68
9	Ultrahigh brilliance quasi-monochromatic MeV \hat{I}^3 -rays based on self-synchronized all-optical Compton scattering. Scientific Reports, 2016, 6, 29518.	3.3	66
10	Robust Cesium Lead Halide Perovskite Microcubes for Frequency Upconversion Lasing. Advanced Optical Materials, 2017, 5, 1700419.	7.3	64
11	Ultrafast Nonlinear Optical Response in Plasmonic 2D Molybdenum Oxide Nanosheets for Mode‣ocked Pulse Generation. Advanced Optical Materials, 2018, 6, 1700948.	7.3	55
12	Subwavelength-Polarized Quasi-Two-Dimensional Perovskite Single-Mode Nanolaser. ACS Nano, 2021, 15, 6900-6908.	14.6	47
13	Two-Photon Pumped Amplified Spontaneous Emission and Lasing from Formamidinium Lead Bromine Nanocrystals. ACS Photonics, 2019, 6, 3150-3158.	6.6	43
14	Linear and Nonlinear Optical Properties of Fewâ€Layer Exfoliated SnSe Nanosheets. Advanced Optical Materials, 2019, 7, 1800579.	7.3	43
15	Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas, 2016, 23, .	1.9	41
16	Advances in inorganic and hybrid perovskites for miniaturized lasers. Nanophotonics, 2020, 9, 2251-2272.	6.0	40
17	Suppressing the Trapping Process by Interfacial Charge Extraction in Antimony Selenide Heterojunctions. ACS Energy Letters, 2021, 6, 1740-1748.	17.4	33
18	Surface Ligand Engineering for CsPbBr ₃ Quantum Dots Aiming at Aggregation Suppression and Amplified Spontaneous Emission Improvement. Advanced Optical Materials, 2020, 8, 2000977.	7.3	32

#	Article	IF	CITATIONS
19	Broad-bandwidth high-temporal-contrast carrier-envelope-phase-stabilized laser seed for 100  PW lasers. Optics Letters, 2020, 45, 2215.	3.3	31
20	13.4 fs, 0.1 Hz OPCPA Front End for the 100 PW-Class Laser Facility. Ultrafast Science, 2022, 2022, .	11.2	31
21	Control of seeding phase for a cascaded laser wakefield accelerator with gradient injection. Applied Physics Letters, 2013, 103, .	3.3	30
22	Ultrafast multi-MeV gamma-ray beam produced by laser-accelerated electrons. Physics of Plasmas, 2017, 24, 093104.	1.9	22
23	Guiding and emission of milijoule single-cycle THz pulse from laser-driven wire-like targets. Optics Express, 2020, 28, 15258.	3.4	21
24	Measurement of nonlinear refractive index coefficient of inert gases with hollow-core fiber. Applied Physics B: Lasers and Optics, 2013, 111, 447-452.	2.2	20
25	Enhanced betatron radiation by steering a laser-driven plasma wakefield with a tilted shock front. Applied Physics Letters, 2018, 112, .	3.3	20
26	Highâ€Quality Singleâ€Mode Lasers Based on Zeroâ€Dimensional Cesium Lead Halide Perovskites. Solar Rrl, 2019, 3, 1900127.	5 . 8	20
27	Angular and energy distribution of fast electrons emitted from a solid surface irradiated by femtosecond laser pulses in various conditions. Physics of Plasmas, 2010, 17, .	1.9	19
28	Enhancement of Amplified Spontaneous Emission Contrast With a Novel Front-End Based on NOPA and SHG Processes. IEEE Journal of Quantum Electronics, 2012, 48, 516-520.	1.9	19
29	Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing. Scientific Reports, 2016, 5, 18365.	3.3	18
30	Temporal optimization of neutron generation from the exploding deuterated methane jet of clusters subjected to an intense laser pulse. Physics of Plasmas, 2009, 16, 083107.	1.9	16
31	Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems. Journal of Physical Chemistry B, 2015, 119, 12265-12273.	2.6	16
32	High Efficiency Upâ€Conversion Random Lasing from Formamidinium Lead Bromide/Aminoâ€Mediated Silica Spheres Composites. Advanced Optical Materials, 2020, 8, 2000290.	7.3	16
33	Effects of self-focusing on tunnel-ionization-induced injection in a laser wakefield accelerator. Physics of Plasmas, 2011, 18, 113101.	1.9	15
34	Direct mapping of attosecond electron dynamics. Nature Photonics, 2021, 15, 216-221.	31.4	14
35	Nonlinear temporal pulse cleaning techniques and application. High Power Laser Science and Engineering, 2013, 1, 98-101.	4.6	12
36	A High-Energy, 100 Hz, Picosecond Laser for OPCPA Pumping. Applied Sciences (Switzerland), 2017, 7, 997.	2.5	12

#	Article	IF	Citations
37	Ultralow-emittance measurement of high-quality electron beams from a laser wakefield accelerator. Physics of Plasmas, 2018, 25, 023106.	1.9	12
38	Time-resolved measurements on reflectivity of an ultrafast laser-induced plasma mirror. Physics of Plasmas, 2009, 16, 103104.	1.9	11
39	Diode-Pumped Solid-State Q-Switched Laser with Rhenium Diselenide as Saturable Absorber. Applied Sciences (Switzerland), 2018, 8, 1753.	2.5	11
40	Accurate characterization of mid-infrared ultrashort pulse based on second-harmonic-generation frequency-resolved optical gating. Optics and Laser Technology, 2019, 120, 105671.	4.6	11
41	Enhanced Amplified Spontaneous Emission in Quasi-2D Perovskite by Facilitating Energy Transfer. ACS Applied Materials & Samp; Interfaces, 2022, 14, 33842-33849.	8.0	11
42	Room-Temperature Electron Spin Generation by Femtosecond Laser Pulses in Colloidal CdS Quantum Dots. Materials, 2013, 6, 4523-4531.	2.9	9
43	Measurements of nonlinear refraction in the mid-infrared materials ZnGeP2 and AgGaS2. Applied Physics B: Lasers and Optics, 2017, 123, 1.	2.2	9
44	High-energy, high-repetition-rate ultraviolet pulses from an efficiency-enhanced, frequency-tripled laser. High Power Laser Science and Engineering, 2021, 9, .	4.6	9
45	Surface-Enhanced Impulsive Coherent Vibrational Spectroscopy. Scientific Reports, 2016, 6, 36471.	3.3	8
46	Ultrafast electron-phonon coupling and photo-induced strain in the morphotropic phase boundary of BixDy1â^'xFeO3 films. Scientific Reports, 2018, 8, 3258.	3.3	8
47	Optimization of Electron Beams Based on Plasma-Density Modulation in a Laser-Driven Wakefield Accelerator. Applied Sciences (Switzerland), 2021, 11, 2560.	2.5	8
48	Polarization-dependent two-color dispersion wave generation and evolution in polarization-maintaining photonic crystal fiber. Laser Physics, 2009, 19, 993-1001.	1.2	7
49	Observation of laser multiple filamentation process and multiple electron beams acceleration in a laser wakefield accelerator. Physics of Plasmas, 2013, 20, .	1.9	7
50	Aluminum-target-assisted femtosecond-laser-filament-induced water condensation and snow formation in a cloud chamber. Scientific Reports, 2018, 8, 18080.	3.3	7
51	Dispersion Management in 10-PW Laser Front End. Optics, 2020, 1, 191-201.	1.2	7
52	Relativistic slingshot: A source for single circularly polarized attosecond x-ray pulses. Physical Review E, 2020, 102, 061201.	2.1	7
53	Low-threshold amplification of spontaneous emission from AgInS ₂ quantum dots. Journal of Materials Chemistry C, 2020, 8, 8515-8520.	5 . 5	7
54	Towards High-Repetition-Rate Intense Terahertz Source With Metal Wire-Based Plasma. IEEE Photonics Journal, 2022, 14, 1-5.	2.0	7

#	Article	IF	Citations
55	Tunable ultrafast electron transfer in WSe ₂ –graphene heterostructures enabled by atomic stacking order. Nanoscale, 2022, 14, 7418-7425.	5.6	7
56	High efficiency laser-driven proton sources using 3D-printed micro-structure. Communications Physics, 2022, 5, .	5.3	7
57	High-temporal-quality injector generated by optical parametric amplification with hollow-core-fiber compression. Optics Letters, 2011, 36, 4785.	3.3	6
58	Broadband spectrographic method for precision alignment of compression gratings. Optical Engineering, 2016, 55, 086105.	1.0	6
59	Bright High-Order Harmonic Generation around 30 nm Using Hundred-Terawatt-Level Laser System for Seeding Full Coherent XFEL. Applied Sciences (Switzerland), 2018, 8, 1446.	2.5	6
60	Monoenergetic proton beam accelerated by single reflection mechanism only during hole-boring stage. High Power Laser Science and Engineering, 2019, 7, .	4.6	6
61	Tuning the central wavelength by hundreds of nanometers using ultrafast molecular phase modulation. Physical Review A, 2015, 91, .	2.5	5
62	Highâ€Quality Singleâ€Mode Lasers Based on Zeroâ€Dimensional Cesium Lead Halide Perovskites. Solar Rrl, 2019, 3, 1970095.	5.8	5
63	High-repetition-rate, high-peak-power 1450Ânm laser source based on optical parametric chirped pulse amplification. High Power Laser Science and Engineering, 2019, 7, .	4.6	5
64	Ultrafast Charge Generation Enhancement in Nanoscale Polymer Solar Cells with DIO Additive. Nanomaterials, 2020, 10, 2174.	4.1	5
65	Femtosecond laser filament guided negative coronas. AIP Advances, 2020, 10, .	1.3	5
66	Role of the Optical–Acoustic Phonon Interaction in the Ultrafast Cooling Process of CVD Graphene. Journal of Physical Chemistry C, 2021, 125, 27283-27289.	3.1	5
67	Tunable ultraviolet source from fifth and seventh harmonic generated by mid-infrared pulses filamentation in air. Laser Physics, 2009, 19, 1793-1795.	1.2	4
68	Energetic proton generation from intense Coulomb explosion of large-size ethane clusters. Physics of Plasmas, 2013, 20, 043109.	1.9	4
69	Splicing technology of Ti:sapphire crystals for a high-energy chirped pulse amplifier laser system. High Power Laser Science and Engineering, 2014, 2, .	4.6	4
70	Generation of high-contrast, joule-level pulses based on Nd:glass chirped pulse amplification laser. High Power Laser Science and Engineering, 2016, 4, .	4.6	4
71	Suppressing Temporal Pedestal in Nd:glass Laser Systems by Avoiding Far-Field Spectral Phase Noise. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-6.	2.9	4
72	Energy Enhancement and Energy Spread Compression of Electron Beams in a Hybrid Laser-Plasma Wakefield Accelerator. Applied Sciences (Switzerland), 2019, 9, 2561.	2.5	4

#	Article	IF	Citations
73	High-Damage-Threshold Chirped Mirrors for Next-Generation Ultrafast, High-Power Laser Systems. IEEE Photonics Technology Letters, 2022, 34, 93-96.	2.5	4
74	A multi-terawatt OPCPA laser system. AIP Conference Proceedings, 2002, , .	0.4	3
75	Photoionization-Induced Broadband Dispersive Wave Generated in an Ar-Filled Hollow-Core Photonic Crystal Fiber. Crystals, 2021, 11, 180.	2.2	3
76	Astigmatism transfer phenomena in the optical parametric amplification process. Applied Physics B: Lasers and Optics, 2017, 123, 1.	2.2	2
77	Perovskite Quantum Dots: Ultrathin, Core–Shell Structured SiO 2 Coated Mn 2+ â€Doped Perovskite Quantum Dots for Bright White Lightâ€Emitting Diodes (Small 19/2019). Small, 2019, 15, 1970101.	10.0	2
78	Discretely Tunable Multiwavelength Visible Laser Based on Cascaded Frequency Conversion Processes. Applied Sciences (Switzerland), 2020, 10, 8608.	2.5	2
79	Near-Infrared Supercontinuum and Ultrashort Pulses Generated Based on Phase-Mismatched Cascaded Frequency Conversion in DSTMS Crystal. IEEE Photonics Journal, 2020, 12, 1-6.	2.0	2
80	A method for aligning a femtosecond multi-petawatt coherent beam combining system. Applied Physics B: Lasers and Optics, 2021, 127, 1.	2.2	2
81	Simultaneous wavefront sensing of multiple beams using neural networks. Applied Physics B: Lasers and Optics, 2022, 128, 1.	2.2	2
82	Polarization beam combination technique for gain saturation effect compensation in high-energy systems. Optical Engineering, 2016, 55, 066111.	1.0	1
83	Twoâ€Photon Lasers: Perovskite CsPb ₂ Br ₅ Microplate Laser with Enhanced Stability and Tunable Properties (Advanced Optical Materials 3/2017). Advanced Optical Materials, 2017, 5, .	7.3	1
84	$1.9\hat{l}$ m Few-Cycle Pulses Based on Multi-Thin-Plate Spectral Broadening and Nonlinear Self-Compression. IEEE Photonics Journal, 2021, 13, 1-8.	2.0	1
85	Timing Fluctuation Correction of A Femtosecond Regenerative Amplifier. Crystals, 2021, 11, 1242.	2.2	1
86	Terahertz-assisted even harmonics generation inÂsilicon. IScience, 2022, 25, 103750.	4.1	1
87	Characterization of Electromagnetic Pulses Generated from Plasma Associated with Laser Filaments-Excited Aluminum Alloy Interaction. Applied Sciences (Switzerland), 2022, 12, 6059.	2.5	1
88	Compact Nd-silicate glass laser facility as synchronous pumping source of 10 TW optical parametric chirped pulse amplifier system., 2001, , .		0
89	Broadband spectral shaping in a Ti:sapphire Regenerative Amplifier. , 0, , .		0
90	Recent Development and Progress on Femtosecond Petawatt Ti:sapphire Laser in SIOM. The Review of Laser Engineering, 2010, 38, 689-692.	0.0	0

Yuxing Leng

#	Article	IF	CITATIONS
91	High temporal contrast femtosecond petawatt Ti:sapphire laser facility and its applications. , 2012, , .		O
92	Muti-joule non-collinear OPCPA at 800nm in yttrium calcium oxyborate. , 2013, , .		0
93	Generation of a high-temporal contrast ultrafast laser pulse near 1,053Ânm through stimulated Raman frequency shift. Applied Physics B: Lasers and Optics, 2014, 117, 973-978.	2.2	O
94	Recent progress and research status of petawatt femtosecond lasers in SIOM., 2015,,.		0
95	Ultrafast pre-damage dynamics in Al <inf>2</inf> O <inf>3</inf> /SiO <inf>2</inf> reflector., 2015,,.		O
96	Broadband 800nm pulse generation with an optical parametric amplifier based on BiB <inf>3</inf> O <inf>6</inf> . , 2015, , .		0
97	Multi-operation laser oscillator: an example of multi-operation laser. Frontiers of Optoelectronics, 2017, 10, 14-17.	3.7	O
98	Very-long distance propagation of high-energy laser pulse in air. Physics of Plasmas, 2018, 25, 113111.	1.9	0
99	Demonstration of Diode-Pumped Yb:LaF3 and Tm,Ho:LaF3 Lasers. Applied Sciences (Switzerland), 2019, 9, 334.	2.5	O
100	Numerical Investigation of the Temporal Contrast in ps-OPCPA with Compact Double BBO Arrangement. Applied Sciences (Switzerland), 2022, 12, 934.	2.5	0
101	A novel focal spot positioning method for high peak power lasers. Applied Physics B: Lasers and Optics, 2022, 128, 1.	2.2	O