
Stefan A Schnitzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3696020/publications.pdf Version: 2024-02-01

STEEAN & SCHNITZED

#	Article	IF	CITATIONS
1	Negative plant–soil feedback predicts tree-species relative abundance in a tropical forest. Nature, 2010, 466, 752-755.	27.8	942
2	The ecology of lianas and their role in forests. Trends in Ecology and Evolution, 2002, 17, 223-230.	8.7	778
3	Soil microbes drive the classic plant diversity–productivity pattern. Ecology, 2011, 92, 296-303.	3.2	517
4	Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms. Ecology Letters, 2011, 14, 397-406.	6.4	421
5	A Mechanistic Explanation for Global Patterns of Liana Abundance and Distribution. American Naturalist, 2005, 166, 262-276.	2.1	390
6	The impact of lianas on tree regeneration in tropical forest canopy gaps: evidence for an alternative pathway of gap-phase regeneration. Journal of Ecology, 2000, 88, 655-666.	4.0	372
7	TREEFALL GAPS AND THE MAINTENANCE OF SPECIES DIVERSITY IN A TROPICAL FOREST. Ecology, 2001, 82, 913-919.	3.2	368
8	Density and diversity of lianas along a chronosequence in a central Panamanian lowland forest. Journal of Tropical Ecology, 2000, 16, 1-19.	1.1	299
9	Lianas suppress tree regeneration and diversity in treefall gaps. Ecology Letters, 2010, 13, 849-857.	6.4	219
10	The impact of lianas on 10 years of tree growth and mortality on Barro Colorado Island, Panama. Journal of Ecology, 2010, 98, 879-887.	4.0	215
11	Disentangling above- and below-ground competition between lianas and trees in a tropical forest. Journal of Ecology, 2005, 93, 1115-1125.	4.0	212
12	A Standard Protocol for Liana Censuses1. Biotropica, 2006, 38, 256-261.	1.6	207
13	Liana Abundance, Diversity, and Distribution on Barro Colorado Island, Panama. PLoS ONE, 2012, 7, e52114.	2.5	150
14	Lianas reduce carbon accumulation and storage in tropical forests. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13267-13271.	7.1	147
15	Science on the Rise in Developing Countries. PLoS Biology, 2004, 2, e1.	5.6	143
16	Censusing and Measuring Lianas: A Quantitative Comparison of the Common Methods1. Biotropica, 2006, 38, 581-591.	1.6	142
17	Annual Rainfall and Seasonality Predict Panâ€tropical Patterns of Liana Density and Basal Area. Biotropica, 2010, 42, 309-317.	1.6	134
18	Spatially disjunct effects of co-occurring competition and facilitation. Ecology Letters, 2005, 8, 1191-1200.	6.4	131

#	Article	IF	CITATIONS
19	Supplemental protocol for liana censuses. Forest Ecology and Management, 2008, 255, 1044-1049.	3.2	131
20	Living close to your neighbors: the importance of both competition and facilitation in plant communities. Ecology, 2014, 95, 2213-2223.	3.2	119
21	Seasonal differences in leaf-level physiology give lianas a competitive advantage over trees in a tropical seasonal forest. Oecologia, 2009, 161, 25-33.	2.0	117
22	Waterâ€use advantage for lianas over trees in tropical seasonal forests. New Phytologist, 2015, 205, 128-136.	7.3	115
23	Differences in leaf traits, leaf internal structure, and spectral reflectance between two communities of lianas and trees: Implications for remote sensing in tropical environments. Remote Sensing of Environment, 2009, 113, 2076-2088.	11.0	110
24	Establishment limitation reduces species recruitment and species richness as soil resources rise. Journal of Ecology, 2004, 92, 339-347.	4.0	106
25	THE DISTRIBUTION OF LIANAS AND THEIR CHANGE IN ABUNDANCE IN TEMPERATE FORESTS OVER THE PAST 45 YEARS. Ecology, 2006, 87, 2973-2978.	3.2	105
26	Water uptake and transport in lianas and co-occurring trees of a seasonally dry tropical forest. Trees - Structure and Function, 2005, 19, 282-289.	1.9	98
27	Liana Impacts on Carbon Cycling, Storage and Sequestration in Tropical Forests. Biotropica, 2013, 45, 682-692.	1.6	98
28	Weak Competition Among Tropical Tree Seedlings: Implications for Species Coexistence. Biotropica, 2008, 40, 432-440.	1.6	96
29	A multitrophic perspective on biodiversity–ecosystem functioning research. Advances in Ecological Research, 2019, 61, 1-54.	2.7	95
30	Novel forests maintain ecosystem processes after the decline of native tree species. Ecological Monographs, 2012, 82, 221-228.	5.4	94
31	Disturbance and clonal reproduction determine liana distribution and maintain liana diversity in a tropical forest. Ecology, 2014, 95, 2169-2178.	3.2	94
32	Pervasive and strong effects of plants on soil chemistry: a meta-analysis of individual plant â€~Zinke' effects. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151001.	2.6	93
33	Phenotypic correlates of the lianescent growth form: a review. Annals of Botany, 2013, 112, 1667-1681.	2.9	91
34	Limited native plant regeneration in novel, exotic-dominated forests on Hawai'i. Forest Ecology and Management, 2008, 256, 593-606.	3.2	88
35	Testing ecological theory with lianas. New Phytologist, 2018, 220, 366-380.	7.3	87
36	Resourceâ€based habitat associations in a neotropical liana community. Journal of Ecology, 2012, 100, 1174-1182.	4.0	83

#	Article	IF	CITATIONS
37	Recruitment of lianas into logging gaps and the effects of pre-harvest climber cutting in a lowland forest in Cameroon. Forest Ecology and Management, 2004, 190, 87-98.	3.2	81
38	Liana diversity, abundance, and mortality in a tropical wet forest in Costa Rica. Forest Ecology and Management, 2004, 190, 3-14.	3.2	76
39	Lianas in gaps reduce carbon accumulation in a tropical forest. Ecology, 2014, 95, 3008-3017.	3.2	72
40	Increasing Liana Abundance and Basal Area in a Tropical Forest: The Contribution of Longâ€distance Clonal Colonization. Biotropica, 2013, 45, 317-324.	1.6	70
41	Minimizing Bias in Biomass Allometry: Model Selection and Logâ€Transformation of Data. Biotropica, 2011, 43, 649-653.	1.6	65
42	The hydraulic efficiency–safety tradeâ€off differs between lianas and trees. Ecology, 2019, 100, e02666.	3.2	65
43	Is logarithmic transformation necessary in allometry? Ten, one-hundred, <i>one-thousand-times yes</i> . Biological Journal of the Linnean Society, 2014, 111, 230-233.	1.6	63
44	Lianas have a greater competitive effect than trees of similar biomass on tropical canopy trees. Ecosphere, 2012, 3, 1-11.	2.2	61
45	Daily environmental conditions determine the competition–facilitation balance for plant water status. Journal of Ecology, 2015, 103, 648-656.	4.0	59
46	Trees as islands: canopy ant species richness increases with the size of lianaâ€free trees in a Neotropical forest. Ecography, 2017, 40, 1067-1075.	4.5	56
47	Lianas suppress seedling growth and survival of 14 tree species in a Panamanian tropical forest. Ecology, 2016, 97, 215-224.	3.2	55
48	Tree species vary widely in their tolerance for liana infestation: A case study of differential host response to generalist parasites. Journal of Ecology, 2018, 106, 781-794.	4.0	53
49	Allometric scaling laws linking biomass and rooting depth vary across ontogeny and functional groups in tropical dry forest lianas and trees. New Phytologist, 2020, 226, 714-726.	7.3	53
50	Have we forgotten the forest because of the trees?. Trends in Ecology and Evolution, 2000, 15, 375-376.	8.7	51
51	Lianas reduce communityâ€level canopy tree reproduction in a Panamanian forest. Journal of Ecology, 2018, 106, 737-745.	4.0	50
52	Predicting Liana Crown Location from Stem Diameter in Three Panamanian Lowland Forests1. Biotropica, 2006, 38, 262-266.	1.6	48
53	Are lianas more drought-tolerant than trees? A test for the role of hydraulic architecture and other stem and leaf traits. Oecologia, 2013, 172, 961-972.	2.0	48
54	Complex facilitation and competition in a temperate grassland: loss of plant diversity and elevated CO2 have divergent and opposite effects on oak establishment. Oecologia, 2013, 171, 449-458.	2.0	47

#	Article	IF	CITATIONS
55	A comprehensive synthesis of liana removal experiments in tropical forests. Biotropica, 2018, 50, 729-739.	1.6	46
56	Contribution of lianas to plant area index and canopy structure in a Panamanian forest. Ecology, 2016, 97, 3271-3277.	3.2	45
57	Liana competition with tropical trees varies seasonally but not with tree species identity. Ecology, 2015, 96, 39-45.	3.2	43
58	Lianas have a seasonal growth advantage over coâ€occurring trees. Ecology, 2019, 100, e02655.	3.2	43
59	Rapid Liana Colonization along a Secondary Forest Chronosequence. Biotropica, 2015, 47, 672-680.	1.6	42
60	Tropical dry forest succession and the contribution of lianas to wood area index (WAI). Forest Ecology and Management, 2009, 258, 941-948.	3.2	38
61	Trade-offs between water transport capacity and drought resistance in neotropical canopy liana and tree species. Tree Physiology, 2017, 37, 1404-1414.	3.1	38
62	Unique competitive effects of lianas and trees in a tropical forest understory. Oecologia, 2015, 177, 561-569.	2.0	37
63	Community and ecosystem ramifications of increasing lianas in neotropical forests. Plant Signaling and Behavior, 2011, 6, 598-600.	2.4	36
64	Rhamnus cathartica L. (Common Buckthorn) as an Ecosystem Dominant in Southern Wisconsin Forests. Northeastern Naturalist, 2007, 14, 387-402.	0.3	33
65	The Ranging Costs of a Fallback Food: Liana Consumption Supplements Diet but Increases Foraging Effort in Howler Monkeys. Biotropica, 2012, 44, 705-714.	1.6	33
66	Modeling the impact of liana infestation on the demography and carbon cycle of tropical forests. Global Change Biology, 2019, 25, 3767-3780.	9.5	33
67	Liana canopy cover mapped throughout a tropical forest with high-fidelity imaging spectroscopy. Remote Sensing of Environment, 2016, 176, 98-106.	11.0	32
68	Physiological regulation and efficient xylem water transport regulate diurnal water and carbon balances of tropical lianas. Functional Ecology, 2017, 31, 306-317.	3.6	32
69	Effects of lianas and Hurricane Wilma on tree damage in the Yucatan Peninsula, Mexico. Journal of Tropical Ecology, 2008, 24, 559-562.	1.1	29
70	Lianas and soil nutrients predict fineâ€scale distribution of aboveâ€ground biomass in a tropical moist forest. Journal of Ecology, 2016, 104, 1819-1828.	4.0	28
71	Edaphic factors and initial conditions influence successional trajectories of early regenerating tropical dry forests. Journal of Ecology, 2020, 108, 160-174.	4.0	28
72	Connectivity explains local ant community structure in a Neotropical forest canopy: a largeâ€scale experimental approach. Ecology, 2019, 100, e02673.	3.2	25

#	Article	IF	CITATIONS
73	Local canopy disturbance as an explanation for longâ€ŧerm increases in liana abundance. Ecology Letters, 2021, 24, 2635-2647.	6.4	25
74	CO2, nitrogen, and diversity differentially affect seed production of prairie plants. Ecology, 2009, 90, 1810-1820.	3.2	24
75	Unraveling the relative role of light and water competition between lianas and trees in tropical forests: A vegetation model analysis. Journal of Ecology, 2021, 109, 519-540.	4.0	24
76	No evidence that elevated <scp>CO</scp> ₂ gives tropical lianas an advantage over tropical trees. Global Change Biology, 2015, 21, 2055-2069.	9.5	23
77	A host–parasite model explains variation in liana infestation among coâ€occurring tree species. Journal of Ecology, 2018, 106, 2435-2445.	4.0	23
78	Functional Roles of Lianas for Forest Canopy Animals. , 2013, , 209-214.		22
79	Effects of dryâ€season irrigation on leaf physiology and biomass allocation in tropical lianas and trees. Ecology, 2019, 100, e02827.	3.2	22
80	Semi-automatic extraction of liana stems from terrestrial LiDAR point clouds of tropical rainforests. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 154, 114-126.	11.1	22
81	Lianas have more acquisitive traits than trees in a dry but not in a wet forest. Journal of Ecology, 2021, 109, 2367-2384.	4.0	22
82	Would Ecology Fail the Repeatability Test?. BioScience, 2016, 66, 98-99.	4.9	21
83	Functional traits of tropical trees and lianas explain spatial structure across multiple scales. Journal of Ecology, 2018, 106, 795-806.	4.0	21
84	Liana abundance and diversity increase with rainfall seasonality along a precipitation gradient in Panama. Ecography, 2020, 43, 25-33.	4.5	21
85	Herbivore and pathogen damage on grassland and woodland plants: a test of the herbivore uncertainty principle. Ecology Letters, 2002, 5, 531-539.	6.4	20
86	Short and Long-Term Soil Moisture Effects of Liana Removal in a Seasonally Moist Tropical Forest. PLoS ONE, 2015, 10, e0141891.	2.5	20
87	Blurred lines between competition and parasitism. Biotropica, 2017, 49, 433-438.	1.6	20
88	Effects of lightning on trees: A predictive model based on in situ electrical resistivity. Ecology and Evolution, 2017, 7, 8523-8534.	1.9	18
89	Effect of lianas on forestâ€level tree carbon accumulation does not differ between seasons: Results from a liana removal experiment in Panama. Journal of Ecology, 2019, 107, 1890-1900.	4.0	17
90	Soil microbes regulate ecosystem productivity and maintain species diversity. Plant Signaling and Behavior, 2011, 6, 1240-1243.	2.4	15

#	Article	IF	CITATIONS
91	Reply to Verbeeck and Kearsley: Addressing the challenges of including lianas in global vegetation models. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5-6.	7.1	15
92	Can Functional Traits Explain Plant Coexistence? A Case Study with Tropical Lianas and Trees. Diversity, 2020, 12, 397.	1.7	15
93	Lianas reduce biomass accumulation in early successional tropical forests. Ecology, 2020, 101, e02989.	3.2	15
94	Lianas explore the forest canopy more effectively than trees under drier conditions. Functional Ecology, 2021, 35, 318-329.	3.6	15
95	Does soil moisture availability explain liana seedling distribution across a tropical rainfall gradient?. Biotropica, 2018, 50, 215-224.	1.6	14
96	The Tree Biodiversity Network (BIOTREE-NET): prospects for biodiversity research and conservation in the Neotropics. Biodiversity and Ecology = Biodiversitat Und Okologie, 2012, 4, 211-224.	0.3	14
97	Dominance by the introduced tree Rhamnus cathartica (common buckthorn) may limit aboveground carbon storage in Southern Wisconsin forests. Forest Ecology and Management, 2011, 261, 545-550.	3.2	13
98	Treefall Gaps and the Maintenance of Species Diversity in a Tropical Forest. Ecology, 2001, 82, 913.	3.2	13
99	Terrestrial Laser Scanning to Detect Liana Impact on Forest Structure. Remote Sensing, 2018, 10, 810.	4.0	12
100	The response of lianas to 20Âyr of nutrient addition in a Panamanian forest. Ecology, 2020, 101, e03190.	3.2	12
101	A graphical null model for scaling biodiversity–ecosystem functioning relationships. Journal of Ecology, 2021, 109, 1549-1560.	4.0	12
102	Lianas maintain insectivorous bird abundance and diversity in a neotropical forest. Ecology, 2020, 101, e03176.	3.2	11
103	Lianas Significantly Reduce Tree Performance and Biomass Accumulation Across Tropical Forests: A Global Meta-Analysis. Frontiers in Forests and Global Change, 2022, 4, .	2.3	11
104	The negative effect of lianas on tree growth varies with tree species and season. Biotropica, 2020, 52, 836-844.	1.6	10
105	Liana optical traits increase tropical forest albedo and reduce ecosystem productivity. Global Change Biology, 2022, 28, 227-244.	9.5	10
106	The Contribution of Lianas to Forest Ecology, Diversity, and Dynamics. Sustainable Development and Biodiversity, 2015, , 149-160.	1.7	8
107	BIOMASS AND TOXICITY RESPONSES OF POISON IVY (TOXICODENDRON RADICANS) TO ELEVATED ATMOSPHERIC CO2: COMMENT. Ecology, 2008, 89, 581-585.	3.2	7
108	Lianas do not reduce tree biomass accumulation in young successional tropical dry forests. Oecologia, 2021, 195, 1019-1029.	2.0	6

#	Article	IF	CITATIONS
109	Review of the Symposium Determinism and Stochasticity in Ecological Succession in <scp>ESA</scp> â€Louisville, 2019. Bulletin of the Ecological Society of America, 2020, 101, e01687.	0.2	5
110	Making (remote) sense of lianas. Journal of Ecology, 2022, 110, 498-513.	4.0	5
111	Vegetative phenologies of lianas and trees in two Neotropical forests with contrasting rainfall regimes. New Phytologist, 2022, 235, 457-471.	7.3	5
112	Do lianas shape ant communities in an early successional tropical forest?. Biotropica, 2019, 51, 885-893.	1.6	4
113	Lianas Significantly Reduce Aboveground and Belowground Carbon Storage: A Virtual Removal Experiment. Frontiers in Forests and Global Change, 2021, 4, .	2.3	4
114	Are we missing the forest for the trees? Conspecific negative density dependence in a temperate deciduous forest. PLoS ONE, 2021, 16, e0245639.	2.5	3
115	Lianas decelerate tropical forest thinning during succession. Ecology Letters, 2022, 25, 1432-1441.	6.4	3
116	First record of Alston's Woolly Mouse Opossum (<i>Micoureus alstoni</i>) from the canal area of Central Panama. Mammalia, 2011, 75, 107-109.	0.7	2
117	Tropical environments. , 1999, , 605-610.		1
118	Connectivity Explains Local Ant Community Structure in a Neotropical Forest Canopy: A Large cale Experimental Approach. Bulletin of the Ecological Society of America, 2019, 100, e01548.	0.2	0
119	Lianas Reduce Biomass Accumulation in Earlyâ€Successional Tropical Forests. Bulletin of the Ecological Society of America, 2020, 101, e01673.	0.2	0