Dong-Di Zhang List of Publications by Year in descending order Source: https://exaly.com/author-pdf/3695974/publications.pdf Version: 2024-02-01 394421 395702 1,437 72 19 33 citations g-index h-index papers 82 82 82 875 docs citations times ranked citing authors all docs | # | Article | IF | CITATIONS | |----|---|---------|--------------| | 1 | Tetradecacobalt(II)â€Containing 36â€Niobate [Co ₁₄ (OH) ₁₆ (H ₂ O) ₈ Nb ₃₆ O ₁₀₆] <a <="" href="mailto:and-to-the-normal-transformation-transformation-transf</td><td>sug>20â^</td><td>'⟨ sup></td></tr><tr><td>2</td><td>Magnetic double-tartaric bridging mono-lanthanide substituted phosphotungstates with photochromic and switchable luminescence properties. Journal of Materials Chemistry C, 2016, 4, 5424-5433.</td><td>5.5</td><td>80</td></tr><tr><td>3</td><td>Coordination-Driven Self-Assembly of a 2D Graphite-Like Framework Constructed from High-Nuclear Ce<sub>10</sub> Cluster Encapsulated Polyoxotungstates. Inorganic Chemistry, 2016, 55, 918-924.</td><td>4.0</td><td>78</td></tr><tr><td>4</td><td>Nona-copper(ii)-containing 18-tungsto-8-arsenate(iii) exhibits antitumor activity. Chemical Communications, 2013, 49, 5189.</td><td>4.1</td><td>73</td></tr><tr><td>5</td><td>Three-dimensional lanthanide polyoxometalate organic complexes: correlation of structure with properties. CrystEngComm, 2012, 14, 3205.</td><td>2.6</td><td>54</td></tr><tr><td>6</td><td>The Polyoxovanadate-Based Carboxylate Derivative K<sub>6</sub>H[V<sup>V</sup><sub>17</sub>V<sup>IV</sup><sub>12</sub>(OH)<sub>4</sub>O<sub>60<Synthesis, Crystal Structure, and Catalysis for Oxidation of Sulfides. Inorganic Chemistry, 2017, 56, 14053-14059.</td><td>/sub>(00
4:0</td><td>C(CH<sub>1</td></tr><tr><td>7</td><td>A {Co<sub>4</sub>O<sub>4</sub>} Cubane Incorporated within a Polyoxoniobate Cluster. Chemistry - A European Journal, 2015, 21, 8380-8383.</td><td>3.3</td><td>49</td></tr><tr><td>8</td><td>Self-assembly of Keggin-type U(<scp>vi</scp>)-containing tungstophosphates with a sandwich structure: an efficient catalyst for the synthesis of sulfonyl pyrazoles. Inorganic Chemistry Frontiers, 2021, 8, 4650-4656.</td><td>6.0</td><td>46</td></tr><tr><td>9</td><td>A {Nb<sub>6</sub>P<sub>2</sub>W<sub>12</sub>}â€Based Hexameric Manganese Cluster with Singleâ€Molecule Magnet Properties. Chemistry - A European Journal, 2015, 21, 17683-17690.</td><td>3.3</td><td>43</td></tr><tr><td>10</td><td>A New Nb<sub>28</sub> Cluster Based on Tungstophosphate, [{Nb<sub>4</sub>O<sub>6</sub>W<sub>12</sub>O<sub>norganic Chemistry, 2014, 53, 9917-9922.</td><td>b4.61 </sul</td><td>b#]<sub>4<</td></tr><tr><td>11</td><td>Magnetoluminescent Bifunctional Dysprosium-Based Phosphotungstates with Synthesis and Correlations between Structures and Properties. Crystal Growth and Design, 2017, 17, 1947-1956.</td><td>3.0</td><td>39</td></tr><tr><td>12</td><td>Two new members of the niobium-substituted polytungstophosphate family based on hexalacunary [H2P2W12O48]12â^² building blocks. Inorganic Chemistry Frontiers, 2015, 2, 254-262.</td><td>6.0</td><td>34</td></tr><tr><td>13</td><td>A Monomeric Tricobalt(II)-Substituted Dawson-Type Polyoxometalate Decorated by a Metal Carbonyl Group: [P<sub>2</sub>W<sub>15</sub>O<sub>56</sub>Co<sub>3</sub>(H<sub>2</sub>O)<sub>3</sub>(OH)<sub Inorganic Chemistry, 2017, 56, 10131-10134.</td><td>>3<sup>.0</sup>/sub>1</td><td>Vin(CO)<sub</td></tr><tr><td>14</td><td>Unprecedented {Fe<sub>14</sub>}/{Fe<sub>10</sub>} Polyoxotungstateâ€Based Nanoclusters with Efficient Photocatalytic H<sub>2</sub> Evolution Activity: Synthesis, Structure, Magnetism, and Electrochemistry. Chemistry - A European Journal, 2016, 22, 10983-10989.</td><td>3.3</td><td>33</td></tr><tr><td>15</td><td>Discovery of Heteropolytantalate: Synthesis and Structure of Two 6-Peroxotantalo-4-phosphate Clusters. Inorganic Chemistry, 2017, 56, 5537-5543.</td><td>4.0</td><td>33</td></tr><tr><td>16</td><td>Assembly of TeO<sub>3</sub><sup>2â€" sup=""> lons Embedded in an Nb/O Cage with Selective Decolorization of Organic Dye. Inorganic Chemistry, 2017, 56, 10119-10122. | 4.0 | 29 | | 17 | Isopentatungstate-supported metal carbonyl derivative: synthesis, characterization, and catalytic properties for alkene epoxidation. Dalton Transactions, 2016, 45, 6726-6731. | 3.3 | 26 | | 18 | An unprecedented trimer based on monovacant Dawson anion: [(α2-P2W17O61)Ln(H2O)4]321â^' (Ln = LallI,) Tj | ETQq000 | O_rgBT /Over | | # | Article | IF | CITATIONS | |----|---|-----|-----------| | 19 | A novel transition-metal-linked hexaniobate cluster with photocatalytic H2 evolution activity. Inorganic Chemistry Communication, 2015, 54, 19-20. | 3.9 | 21 | | 20 | A high-nuclearity isopolyoxotungstate based manganese cluster: one-pot synthesis and step-by-step assembly. Chemical Communications, 2018, 54, 5458-5461. | 4.1 | 21 | | 21 | Grafting transition metal–organophosphonate fragments onto heteropolyoxomolybdate: activity in photocatalysis. Dalton Transactions, 2015, 44, 17544-17550. | 3.3 | 19 | | 22 | Ligand-controlled formation of covalently modified antimoniomolybdates and their photochromic properties. CrystEngComm, 2017, 19, 207-213. | 2.6 | 19 | | 23 | Octamolybdate-supported tricarbonyl metal derivatives: [{H2Mo8O30}{M(CO)3}2]8â^' (M = Mnl and Rel).
Dalton Transactions, 2013, 42, 2696. | 3.3 | 18 | | 24 | Synthesis, structure and photocatalytic hydrogen evolution of a silver-linked hexaniobate Lindqvist chain. Inorganic Chemistry Communication, 2015, 61, 157-159. | 3.9 | 18 | | 25 | {Fe ₃ Nb ₂₅ } cluster based on an Fe-centred Keggin unit. Dalton Transactions, 2017, 46, 1368-1371. | 3.3 | 18 | | 26 | A Series of 3D Rareâ€Earthâ€Metal–Organic Frameworks with Isolated Guest Keggin Silicotungstate Fragments as Anion Templates. European Journal of Inorganic Chemistry, 2011, 2011, 5397-5404. | 2.0 | 17 | | 27 | A novel diniobium-inserted sandwich-type polyoxometalate K6H3[Nb2K(H2O)4(A-α-SiW9O34)2]Â-23H2O constructed from two trivacant Keggin [A-α-SiW9O34]10â^' moieties linked via a V-shaped {Nb2K} group. Inorganic Chemistry Communication, 2012, 17, 75-78. | 3.9 | 17 | | 28 | Syntheses, structures and properties of dimeric rare earth derivatives based on monovacant Keggin-type polyoxotungstates. Inorganica Chimica Acta, 2012, 391, 218-223. | 2.4 | 16 | | 29 | The first two-dimensional organic–inorganic hybrid constructed by oxalate-bridging scandium-substituted Keggin-type silicotungstate and [Cu(en)2]2+ coordination cations. Inorganic Chemistry Communication, 2012, 20, 191-195. | 3.9 | 16 | | 30 | Insight into the reactivity of in situ formed {(NbO ₂) ₃ SiW ₉ }: synthesis, structure, and solution properties of a trimeric polytungstosilicate trapping a {MnNb ₉ } core. Dalton Transactions, 2016, 45, 15236-15241. | 3.3 | 16 | | 31 | The {Ni ₁₀ Nb ₃₂ } aggregate: a perspective on isopolyniobates as ligands. Dalton Transactions, 2016, 45, 16173-16176. | 3.3 | 16 | | 32 | Synergistic Effect of Nickel Oxyhydroxide and Tungsten Carbide in Electrocatalytic Alcohol Oxidation. Chemistry of Materials, 2022, 34, 959-969. | 6.7 | 16 | | 33 | 2-D and 3-D organic–inorganic hybrid lanthanide molybdates linking by pyridine-2,5-dicarboxylate.
CrystEngComm, 2012, 14, 8677. | 2.6 | 15 | | 34 | A novel sandwich-type tungstoarsenate containing a cagelike {Ca ₆ } cluster with a water molecule enwrapped. Dalton Transactions, 2013, 42, 874-878. | 3.3 | 15 | | 35 | Discovery and isolation of the trans-isomers of two 1 : 2-type lanthanide-containing monolacunary Dawson-type tungstophosphates: [LnIII(α2-P2W17O61)2]17â^' (Ln = La, Ce). Dalton Transactions, 2017, 46, 5398-5405. | 3.3 | 15 | | 36 | Two Dawson-type U(VI)-containing selenotungstates with sandwich structure and its highâ€efficiency catalysis for pyrazoles. Chinese Chemical Letters, 2022, 33, 3899-3902. | 9.0 | 15 | | # | Article | IF | CITATIONS | |----|---|---------------------|-----------------------| | 37 | Synthesis and characterization of a series of novel polyoxometalate-supported carbonyl manganese derivatives. RSC Advances, 2016, 6, 108335-108342. | 3.6 | 14 | | 38 | A nona-vacant Keggin-type tricarbonyl rhenium derivative {[PMo ₃ 36161616334686006-69009. | 3.6 | 13 | | 39 | Keggin polyoxoanion supported organic–inorganic trinuclear lutetium cluster,
{Na(H2O)3[Lu(pydc)(H2O)3]3}[SiW12O40]·26.5H2O. Dalton Transactions, 2012, 41, 9885. | 3.3 | 12 | | 40 | Lanthanide-containing peroxoisopolytungstate with tetrahedral WO42â^' template core, [Ln4(WO4)(H2O)16{W7O22(O2)2}4]14â^'. CrystEngComm, 2013, 15, 4597. | 2.6 | 12 | | 41 | Ni III -embedded polyoxovanadate: Synthesis, structure and magnetic properties. Journal of Alloys and Compounds, 2016, 686, 1032-1036. | 5.5 | 12 | | 42 | Syntheses, characterization and magnetic properties of two novel inorganic–organic tungstoferrites, [FeIII4(H2O)2(B-α-FeIIIW9O34)2]10Ⱂ. Journal of Solid State Chemistry, 2013, 198, 18-23. | 2.9 | 11 | | 43 | Synthesis, crystal structure, characterization and magnetic property of a new organophosphonate-based polyoxovanadate. Inorganic Chemistry Communication, 2016, 71, 65-67. | 3.9 | 11 | | 44 | Synthesis, structure, and photocatalytic hydrogen evolution of a trimeric Nb/W addendum cluster. RSC Advances, 2017, 7, 36416-36420. | 3.6 | 11 | | 45 | Immobilization of carbonyl rhenium tripods on the surface of a trinickel-substituted Dawson-type polyoxotungstate. Dalton Transactions, 2018, 47, 6288-6292. | 3.3 | 11 | | 46 | Assembly of two hybrid organic-inorganic hexatantalate. Inorganic Chemistry Communication, 2019, 101, 6-10. | 3.9 | 11 | | 47 | Two novel telluroniobates with efficient catalytic activity for the imidation/amidation reaction. Chemical Communications, 2022, 58, 1167-1170. | 4.1 | 11 | | 48 | A monovacant heteropolytungstate-incorporated trimeric carbonyl rhenium cluster, [(AsW ₁₁ O ₃₉){Re(CO) ₃ } ₃ ($1\frac{1}{4}$ _{O_{-OH)($1\frac{1}{4}$_{synthesis, structure and catalytic properties. RSC Advances, 2014, 4, 28848-28851.}}} | 2< /sas b>-0 |)H)] øsup>6â^ | | 49 | Organometallic functionalized non-classical polyoxometalates: synthesis, characterization and electrochemical properties. Dalton Transactions, 2018, 47, 9317-9323. | 3.3 | 10 | | 50 | Four Members of the Sandwich-Type Polytungstophosphate Family Based on Pentalacunary [HPW7O28]8-Building Blocks. European Journal of Inorganic Chemistry, 2013, 2013, 1672-1680. | 2.0 | 9 | | 51 | Four transition-metal-bridging risedronate-based polyoxomolybdates: Syntheses, structures, characterizations and magnetic properties. Synthetic Metals, 2017, 223, 19-25. | 3.9 | 9 | | 52 | Synthesis, characterization and catalytic epoxidation properties of lanthanide-stabilized peroxoisopolytungstates. Dalton Transactions, 2017, 46, 12981-12987. | 3.3 | 9 | | 53 | Shape-control of CeF ₃ nanocrystals by doping polyoxometalates: syntheses, characterization and tunable photoluminescence. Chemical Communications, 2019, 55, 1619-1622. | 4.1 | 9 | | 54 | A large molecular cluster with high proton release capacity. Chemical Communications, 2020, 56, 12849-12852. | 4.1 | 9 | | # | Article | IF | CITATIONS | |----|---|-------------------|-----------| | 55 | Unraveling the Effects of Cobalt on Crystal Growth and Solution Behavior of Nb6P2W12-based Dimeric Clusters. Inorganic Chemistry, 2020, 59, 6747-6754. | 4.0 | 9 | | 56 | Four di-Cull-substituted sandwich-type germanomolybdates obtained under different reaction conditions: from zero-dimensional to two-dimensional structure. Dalton Transactions, 2012, 41, 5235. | 3.3 | 7 | | 57 | Polyoxomolybdates functionalized by a flexible carboxylic acid and their photochromic properties. Journal of Physics and Chemistry of Solids, 2017, 110, 161-166. | 4.0 | 7 | | 58 | Synthesis, structure, and luminescent properties of a family of lanthanide-functionalized peroxoniobiophosphates. Scientific Reports, 2017, 7, 10653. | 3.3 | 7 | | 59 | Two New Tetravacant Organometallic Keggin-Type Heteropolyoxomolybdates-Supported Manganese
Carbonyl Derivatives. Molecules, 2017, 22, 1351. | 3.8 | 7 | | 60 | Insight into hexanuclear peroxotantalum complexes: synthesis, characterization, and efficient catalyst for amidation reaction. Tungsten, 2022, 4, 158-167. | 4.8 | 7 | | 61 | Bouquet-like uranium-containing selenotungstate consisting of two different Keggin-/Anderson-type units with excellent photoluminescence quantum yield. Chinese Chemical Letters, 2023, 34, 107209. | 9.0 | 7 | | 62 | Three rare-earth incorporating 6-peroxotantalo-4-selenates and catalytic activities for imidation reaction. Dalton Transactions, 2022, 51, 9988-9993. | 3.3 | 7 | | 63 | Synthesis and characterization of organotriphosphonate-functionalized TM-containing polyoxotungstates. RSC Advances, 2015, 5, 106077-106082. | 3.6 | 6 | | 64 | Discovery of the selenotantalate building block and its lanthanide derivatives: design, synthesis, and RhB decolorization properties. Dalton Transactions, 2020, 49, 4078-4083. | 3.3 | 6 | | 65 | Ion-pairs of structurally related polyoxotantalate clusters and divalent metal cations. Journal of Coordination Chemistry, 2020, 73, 2579-2589. | 2.2 | 4 | | 66 | A new organic-inorganic hybrid dimeric hexaniobate linked by Co-complex. Inorganic Chemistry Communication, 2016, 73, 187-189. | 3.9 | 3 | | 67 | Dimeric dumbbell architecture based on PNb14 unit. Inorganic Chemistry Communication, 2019, 102, 210-214. | 3.9 | 3 | | 68 | Two Magnetic 2D Inorganic–Organic Hybrid Framework Materials Constructed by Phosphotungstates.
Journal of Cluster Science, 2017, 28, 1761-1771. | 3.3 | 2 | | 69 | A Nonclassical Polyoxoanion [P ₃ W ₆ (O ₂) ₆ (OH) ₂ O ₂] ^{7â€ Constructed by Two {PW₃(O₂)₃(OH)O₉} Subunits and a {PO₄} Group, European lournal of Inorganic Chemistry, 2019, 2019, 523-528.} | :" <u>{ </u> sup> | 2 | | 70 | Copper(II)–ethylenediamine linked Nb24 dimer with one dimensional chain architecture. Inorganica Chimica Acta, 2020, 508, 119646. | 2.4 | 2 | | 71 | A new ring-shaped Cr-containing tungstophosphate based on [H 2 P 2 W 12 O 48] 12â^'. Inorganic Chemistry Communication, 2017, 75, 5-7. | 3.9 | 1 | | 72 | Assembly of selenoniobate–vanadoniobate double-anion heteropolyoxoniobate: synthesis, structure, and magnetic property. Tungsten, 2023, 5, 75-80. | 4.8 | 1 |