
Nathan W Bartlett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3695807/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Understanding Rhinovirus Circulation and Impact on Illness. Viruses, 2022, 14, 141.	3.3	27
2	Airway mucins promote immunopathology in virus-exacerbated chronic obstructive pulmonary disease. Journal of Clinical Investigation, 2022, 132, .	8.2	27
3	TLR7 agonist loaded airway epithelial targeting nanoparticles stimulate innate immunity and suppress viral replication in human bronchial epithelial cells. International Journal of Pharmaceutics, 2022, 617, 121586.	5.2	1
4	IL-25 blockade augments antiviral immunity during respiratory virus infection. Communications Biology, 2022, 5, 415.	4.4	9
5	Toll-like receptor-agonist-based therapies for respiratory viral diseases: thinking outside the cell. European Respiratory Review, 2022, 31, 210274.	7.1	9
6	Platform for isolation and characterization of SARS-CoV-2 variants enables rapid characterization of Omicron in Australia. Nature Microbiology, 2022, 7, 896-908.	13.3	32
7	Inhaled corticosteroids downregulate the SARS-CoV-2 receptor ACE2 in COPD through suppression of type I interferon. Journal of Allergy and Clinical Immunology, 2021, 147, 510-519.e5.	2.9	121
8	Prophylactic intranasal administration of a TLR2/6 agonist reduces upper respiratory tract viral shedding in a SARS-CoV-2 challenge ferret model. EBioMedicine, 2021, 63, 103153.	6.1	76
9	<scp>ACE2</scp> expression is elevated in airway epithelial cells from older and male healthy individuals but reduced in asthma. Respirology, 2021, 26, 442-451.	2.3	59
10	Blood Interferon-α Levels and Severity, Outcomes, and Inflammatory Profiles in Hospitalized COVID-19 Patients. Frontiers in Immunology, 2021, 12, 648004.	4.8	60
11	TLR2-mediated activation of innate responses in the upper airways confers antiviral protection of the lungs. JCI Insight, 2021, 6, .	5.0	15
12	Rhinovirus-induced CCL17 and CCL22 in Asthma Exacerbations and Differential Regulation by STAT6. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 344-356.	2.9	13
13	miR-122 promotes virus-induced lung disease by targeting SOCS1. JCI Insight, 2021, 6, .	5.0	17
14	Dysregulated actin cytoskeleton associated with barrier dysfunction in asthma. FASEB Journal, 2021, 35, .	0.5	0
15	Announcing the Editorial Board Fellowship Program of the American Journal of Physiology-Lung Cellular and Molecular Physiology. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L116-L118.	2.9	1
16	Promoting our early career members at AJP-Lung: The Editorial Board Fellowship Program and the Next Generation Physiologist Highlights section at our Journal. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L844-L846.	2.9	1
17	A cGAS-dependent response links DNA damage and senescence in alveolar epithelial cells: a potential drug target in IPF. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L859-L871.	2.9	17
18	TLR2-mediated innate immune priming boosts lung anti-viral immunity. European Respiratory Journal, 2021, 58, 2001584.	6.7	16

NATHAN W BARTLETT

#	Article	IF	CITATIONS
19	Blocking Notch3 Signaling Abolishes MUC5AC Production in Airway Epithelial Cells from Individuals with Asthma. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 513-523.	2.9	36
20	Seroprevalence of Torque Teno Virus in hemodialysis and renal transplant patients in Australia: A crossâ€sectional study. Transplant Infectious Disease, 2020, 22, e13400.	1.7	4
21	Airway mechanical compression: its role in asthma pathogenesis and progression. European Respiratory Review, 2020, 29, 190123.	7.1	20
22	A Critical Role for the CXCL3/CXCL5/CXCR2 Neutrophilic Chemotactic Axis in the Regulation of Type 2 Responses in a Model of Rhinoviral-Induced Asthma Exacerbation. Journal of Immunology, 2020, 205, 2468-2478.	0.8	31
23	Human coronaviruses 229E and OC43 replicate and induce distinct antiviral responses in differentiated primary human bronchial epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L926-L931.	2.9	36
24	Airway Epithelial Cell Immunity Is Delayed During Rhinovirus Infection in Asthma and COPD. Frontiers in Immunology, 2020, 11, 974.	4.8	60
25	Airway epithelial-targeted nanoparticles for asthma therapy. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L500-L509.	2.9	23
26	Beclomethasone Has Lesser Suppressive Effects on Inflammation and Antibacterial Immunity Than Fluticasone or Budesonide in Experimental Infection Models. Chest, 2020, 158, 947-951.	0.8	5
27	Rhinovirus structure, replication, and classification. , 2019, , 1-23.		6
28	In vivo experimental models of infection and disease. , 2019, , 195-238.		1
29	Inhaled corticosteroid suppression of cathelicidin drives dysbiosis and bacterial infection in chronic obstructive pulmonary disease. Science Translational Medicine, 2019, 11, .	12.4	75
30	Modeling the impact of low-dose particulate matter on lung health. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L550-L553.	2.9	2
31	Antiviral immunity is impaired in COPD patients with frequent exacerbations. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L893-L903.	2.9	57
32	Extracellular vesicles in lung health, disease, and therapy. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L977-L989.	2.9	48
33	STAT3 Regulates the Onset of Oxidant-induced Senescence in Lung Fibroblasts. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 61-73.	2.9	52
34	Respiratory Viruses and Asthma. Seminars in Respiratory and Critical Care Medicine, 2018, 39, 045-055.	2.1	24
35	Persistent induction of goblet cell differentiation in the airways: Therapeutic approaches. , 2018, 185, 155-169.		24
36	Plasmacytoid dendritic cells drive acute asthma exacerbations. Journal of Allergy and Clinical Immunology, 2018, 142, 542-556.e12.	2.9	45

NATHAN W BARTLETT

#	Article	IF	CITATIONS
37	Corticosteroid suppression of antiviral immunity increases bacterial loads and mucus production in COPD exacerbations. Nature Communications, 2018, 9, 2229.	12.8	153
38	Host DNA released by NETosis promotes rhinovirus-induced type-2 allergic asthma exacerbation. Nature Medicine, 2017, 23, 681-691.	30.7	260
39	A Comprehensive Evaluation of Nasal and Bronchial Cytokines and Chemokines Following Experimental Rhinovirus Infection in Allergic Asthma: Increased Interferons (IFN-γ and IFN-λ) and Type 2 Inflammation (IL-5 and IL-13). EBioMedicine, 2017, 19, 128-138.	6.1	102
40	Advances in the treatment of virus-induced asthma. Expert Review of Respiratory Medicine, 2016, 10, 629-641.	2.5	9
41	Toll-like receptor 7 governs interferon and inflammatory responses to rhinovirus and is suppressed by IL-5-induced lung eosinophilia. Thorax, 2015, 70, 854-861.	5.6	90
42	A short-term mouse model that reproduces the immunopathological features of rhinovirus-induced exacerbation of COPD. Clinical Science, 2015, 129, 245-258.	4.3	38
43	Effect of fluticasone propionate on virus-induced airways inflammation and anti-viral immune responses in mice. Lancet, The, 2015, 385, S88.	13.7	11
44	CCL7 and IRF-7 Mediate Hallmark Inflammatory and IFN Responses following Rhinovirus 1B Infection. Journal of Immunology, 2015, 194, 4924-4930.	0.8	39
45	Mouse Models of Rhinovirus Infection and Airways Disease. Methods in Molecular Biology, 2015, 1221, 181-188.	0.9	16
46	Rhinovirus-induced IL-25 in asthma exacerbation drives type 2 immunity and allergic pulmonary inflammation. Science Translational Medicine, 2014, 6, 256ra134.	12.4	280
47	Role Of Interleukine-33 In Rhinovirus-Induced Allergic Asthma Exacerbation. Journal of Allergy and Clinical Immunology, 2014, 133, AB52.	2.9	0
48	IL-33–Dependent Type 2 Inflammation during Rhinovirus-induced Asthma Exacerbations <i>In Vivo</i> . American Journal of Respiratory and Critical Care Medicine, 2014, 190, 1373-1382.	5.6	500
49	Innate and Adaptive Lymphocyte Responses In a Mouse Model Of Rhinovirus-Induced Asthma Exacerbation. Journal of Allergy and Clinical Immunology, 2014, 133, AB135.	2.9	0
50	The E3 ubiquitin ligase midline 1 promotes allergen and rhinovirus-induced asthma by inhibiting protein phosphatase 2A activity. Nature Medicine, 2013, 19, 232-237.	30.7	127
51	An Anti-Human ICAM-1 Antibody Inhibits Rhinovirus-Induced Exacerbations of Lung Inflammation. PLoS Pathogens, 2013, 9, e1003520.	4.7	69
52	Cross-Serotype Immunity Induced by Immunization with a Conserved Rhinovirus Capsid Protein. PLoS Pathogens, 2013, 9, e1003669.	4.7	69
53	Defining critical roles for NFâ€₽B p65 and type I interferon in innate immunity to rhinovirus. EMBO Molecular Medicine, 2012, 4, 1244-1260.	6.9	80
54	The microbiology of asthma. Nature Reviews Microbiology, 2012, 10, 459-471.	28.6	170

4

NATHAN W BARTLETT

#	Article	IF	CITATIONS
55	Rhinovirus infection induces expression of airway remodelling factors in vitro and in vivo. Respirology, 2011, 16, 367-377.	2.3	43
56	Co-ordinated Role of TLR3, RIG-I and MDA5 in the Innate Response to Rhinovirus in Bronchial Epithelium. PLoS Pathogens, 2010, 6, e1001178.	4.7	286
57	Targeting the NF-κB pathway in asthma and chronic obstructive pulmonary disease. , 2009, 121, 1-13.		323
58	Genetics and epidemiology: asthma and infection. Current Opinion in Allergy and Clinical Immunology, 2009, 9, 395-400.	2.3	42
59	Mouse models of rhinovirus-induced disease and exacerbation of allergic airway inflammation. Nature Medicine, 2008, 14, 199-204.	30.7	339
60	Vaccinia virus lacking the Bcl-2-like protein N1 induces a stronger natural killer cell response to infection. Journal of General Virology, 2008, 89, 2877-2881.	2.9	27
61	Functional and structural studies of the vaccinia virus virulence factor N1 reveal a Bcl-2-like anti-apoptotic protein. Journal of General Virology, 2007, 88, 1656-1666.	2.9	153
62	Role of deficient type III interferon-λ production in asthma exacerbations. Nature Medicine, 2006, 12, 1023-1026.	30.7	955
63	Deletion of gene A41L enhances vaccinia virus immunogenicity and vaccine efficacy. Journal of General Virology, 2006, 87, 29-38.	2.9	75
64	Murine interferon lambdas (type III interferons) exhibit potent antiviral activity in vivo in a poxvirus infection model. Journal of General Virology, 2005, 86, 1589-1596.	2.9	95
65	A new member of the interleukin 10-related cytokine family encoded by a poxvirus. Journal of General Virology, 2004, 85, 1401-1412.	2.9	24
66	The vaccinia virus N1L protein is an intracellular homodimer that promotes virulence. Journal of General Virology, 2002, 83, 1965-1976.	2.9	108
67	Rhinovirus infection induces expression of airway remodelling factors in vitro and in vivo. , 0, .		1