Jonathan M Conway

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3695655/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A single bacterial genus maintains root growth in a complex microbiome. Nature, 2020, 587, 103-108.	13.7	245
2	The Plant Microbiome: From Ecology to Reductionism and Beyond. Annual Review of Microbiology, 2020, 74, 81-100.	2.9	225
3	Thermophilic lignocellulose deconstruction. FEMS Microbiology Reviews, 2014, 38, 393-448.	3.9	145
4	Elucidating Bacterial Gene Functions in the Plant Microbiome. Cell Host and Microbe, 2018, 24, 475-485.	5.1	129
5	Specific modulation of the root immune system by a community of commensal bacteria. Proceedings of the United States of America, 2021, 118, .	3.3	81
6	A complex immune response to flagellin epitope variation in commensal communities. Cell Host and Microbe, 2021, 29, 635-649.e9.	5.1	73
7	Influence of Dipole–Dipole Interactions on Coverage-Dependent Adsorption: CO and NO on Pt(111). Langmuir, 2012, 28, 8408-8417.	1.6	67
8	Biotechnology of extremely thermophilic archaea. FEMS Microbiology Reviews, 2018, 42, 543-578.	3.9	67
9	Multidomain, Surface Layer-associated Glycoside Hydrolases Contribute to Plant Polysaccharide Degradation by Caldicellulosiruptor Species. Journal of Biological Chemistry, 2016, 291, 6732-6747.	1.6	44
10	A Highly Thermostable Kanamycin Resistance Marker Expands the Tool Kit for Genetic Manipulation of Caldicellulosiruptor bescii. Applied and Environmental Microbiology, 2016, 82, 4421-4428.	1.4	41
11	Functional Analysis of the Glucan Degradation Locus in Caldicellulosiruptor bescii Reveals Essential Roles of Component Glycoside Hydrolases in Plant Biomass Deconstruction. Applied and Environmental Microbiology, 2017, 83, .	1.4	37
12	Comparative Analysis of Extremely Thermophilic Caldicellulosiruptor Species Reveals Common and Unique Cellular Strategies for Plant Biomass Utilization. Applied and Environmental Microbiology, 2015, 81, 7159-7170.	1.4	36
13	Genus-Wide Assessment of Lignocellulose Utilization in the Extremely Thermophilic Genus Caldicellulosiruptor by Genomic, Pangenomic, and Metagenomic Analyses. Applied and Environmental Microbiology, 2018, 84, .	1.4	33
14	Discrete and Structurally Unique Proteins (TÄpirins) Mediate Attachment of Extremely Thermophilic Caldicellulosiruptor Species to Cellulose. Journal of Biological Chemistry, 2015, 290, 10645-10656.	1.6	28
15	Quantitative fermentation of unpretreated transgenic poplar by Caldicellulosiruptor bescii. Nature Communications, 2019, 10, 3548.	5.8	22
16	Native xylose-inducible promoter expands the genetic tools for the biomass-degrading, extremely thermophilic bacterium Caldicellulosiruptor bescii. Extremophiles, 2018, 22, 629-638.	0.9	21
17	Novel multidomain, multifunctional glycoside hydrolases from highly lignocellulolytic <i>Caldicellulosiruptor</i> species. AICHE Journal, 2018, 64, 4218-4228.	1.8	19
18	Genome Stability in Engineered Strains of the Extremely Thermophilic Lignocellulose-Degrading Bacterium Caldicellulosiruptor bescii. Applied and Environmental Microbiology, 2017, 83, .	1.4	17

JONATHAN M CONWAY

#	Article	IF	CITATIONS
19	Parsing in vivo and in vitro contributions to microcrystalline cellulose hydrolysis by multidomain glycoside hydrolases in the <i>Caldicellulosiruptor bescii</i> secretome. Biotechnology and Bioengineering, 2018, 115, 2426-2440.	1.7	16
20	Complete Genome Sequences of <i>Caldicellulosiruptor</i> sp. Strain Rt8.B8, <i>Caldicellulosiruptor</i> sp. Strain Wai35.B1, and " <i>Thermoanaerobacter cellulolyticus</i> ― Genome Announcements, 2015, 3, .	0.8	15
21	Bioavailability of Carbohydrate Content in Natural and Transgenic Switchgrasses for the Extreme Thermophile Caldicellulosiruptor bescii. Applied and Environmental Microbiology, 2017, 83, .	1.4	13
22	<i><scp>C</scp>aldicellulosiruptor saccharolyticus</i> transcriptomes reveal consequences of chemical pretreatment and genetic modification of lignocellulose. Microbial Biotechnology, 2017, 10, 1546-1557.	2.0	11
23	CRAGE-Duet Facilitates Modular Assembly of Biological Systems for Studying Plant–Microbe Interactions. ACS Synthetic Biology, 2020, 9, 2610-2615.	1.9	9
24	The Extremely Thermophilic Genus Caldicellulosiruptor: Physiological and Genomic Characteristics for Complex Carbohydrate Conversion to Molecular Hydrogen. Advances in Photosynthesis and Respiration, 2014, , 177-195.	1.0	5
25	Lignocellulosic Biomass Deconstruction by the Extremely Thermophilic Genus Caldicellulosiruptor. , 2015, , 91-120.		4