
Miroslaw K Gorny

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3695476/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Virus Control in Vaccinated Rhesus Macaques Is Associated with Neutralizing and Capturing Antibodies against the SHIV Challenge Virus but Not with V1V2 Vaccine–Induced Anti-V2 Antibodies Alone. Journal of Immunology, 2021, 206, 1266-1283.	0.8	8
2	The light chain of antibodies specific to the V2 region of HIV-1 can determine their function. Human Immunology, 2021, 82, 923-929.	2.4	1
3	A large repertoire of B cell lineages targeting one cluster of epitopes in a vaccinated rhesus macaque. Vaccine, 2021, 39, 5607-5614.	3.8	2
4	Search for antiviral functions of potentially protective antibodies against V2 region of HIV-1. Human Vaccines and Immunotherapeutics, 2020, 16, 2033-2041.	3.3	2
5	Prediction of Contact Residues in Anti-HIV Neutralizing Antibody by Deep Learning. Japanese Journal of Infectious Diseases, 2020, 73, 235-241.	1.2	5
6	Comparison of various radioactive payloads for a human monoclonal antibody to glycoprotein 41 for elimination of HIV-infected cells. Nuclear Medicine and Biology, 2020, 82-83, 80-88.	0.6	6
7	V2-Specific Antibodies in HIV-1 Vaccine Research and Natural Infection: Controllers or Surrogate Markers. Animals, 2019, 9, 526.	2.3	11
8	V2-Specific Antibodies in HIV-1 Vaccine Research and Natural Infection: Controllers or Surrogate Markers. Vaccines, 2019, 7, 82.	4.4	11
9	Near full genome characterization of HIVâ€1 unique recombinant forms in Cameroon reveals dominant CRF02_AG and F2 recombination patterns. Journal of the International AIDS Society, 2019, 22, e25362.	3.0	7
10	Immune Correlates of Disease Progression in Linked HIV-1 Infection. Frontiers in Immunology, 2019, 10, 1062.	4.8	14
11	Anti-V2 antibody deficiency in individuals infected with HIV-1 in Cameroon. Virology, 2019, 529, 57-64.	2.4	12
12	Association of Diverse Genotypes and Phenotypes of Immune Cells and Immunoglobulins With the Course of HIV-1 Infection. Frontiers in Immunology, 2018, 9, 2735.	4.8	3
13	Structural Comparison of Human Anti-HIV-1 gp120 V3 Monoclonal Antibodies of the Same Gene Usage Induced by Vaccination and Chronic Infection. Journal of Virology, 2018, 92, .	3.4	7
14	Fine epitope signature of antibody neutralization breadth at the HIV-1 envelope CD4-binding site. JCI Insight, 2018, 3, .	5.0	16
15	Ro52 autoantibodies arise from self-reactive progenitors in a mother of a child with neonatal lupus. Journal of Autoimmunity, 2017, 79, 99-104.	6.5	13
16	Monoclonal Antibodies Specific for the V2, V3, CD4-Binding Site, and gp41 of HIV-1 Mediate Phagocytosis in a Dose-Dependent Manner. Journal of Virology, 2017, 91, .	3.4	48
17	Differential induction of anti-V3 crown antibodies with cradle- and ladle-binding modes in response to HIV-1 envelope vaccination. Vaccine, 2017, 35, 1464-1473.	3.8	15
18	Multimethod Longitudinal HIV Drug Resistance Analysis in Antiretroviral-Therapy-Naive Patients. Journal of Clinical Microbiology, 2017, 55, 2785-2800.	3.9	25

MIROSLAW K GORNY

#	Article	IF	CITATIONS
19	Combination of Antiretroviral Drugs and Radioimmunotherapy Specifically Kills Infected Cells from HIV-Infected Individuals. Frontiers in Medicine, 2016, 3, 41.	2.6	6
20	Induction of neutralizing antibodies in rhesus macaques using V3 mimotope peptides. Vaccine, 2016, 34, 2713-2721.	3.8	23
21	Fc Receptor-Mediated Activities of Env-Specific Human Monoclonal Antibodies Generated from Volunteers Receiving the DNA Prime-Protein Boost HIV Vaccine DP6-001. Journal of Virology, 2016, 90, 10362-10378.	3.4	26
22	A broad range of mutations in HIV-1 neutralizing human monoclonal antibodies specific for V2, V3, and the CD4 binding site. Molecular Immunology, 2015, 66, 364-374.	2.2	30
23	Functional and Structural Characterization of Human V3-Specific Monoclonal Antibody 2424 with Neutralizing Activity against HIV-1 JRFL. Journal of Virology, 2015, 89, 9090-9102.	3.4	10
24	The V1V2 Region of HIV-1 gp120 Forms a Five-Stranded Beta Barrel. Journal of Virology, 2015, 89, 8003-8010.	3.4	68
25	Strain-Specific V3 and CD4 Binding Site Autologous HIV-1 Neutralizing Antibodies Select Neutralization-Resistant Viruses. Cell Host and Microbe, 2015, 18, 354-362.	11.0	66
26	Structure of HIV-1 gp120 V1V2 in Complex with Human mAb 830A Reveals a 5-Stranded Beta Barrel Conformation and Integrin-binding Site. AIDS Research and Human Retroviruses, 2014, 30, A18-A19.	1.1	0
27	Global Panel of HIV-1 Env Reference Strains for Standardized Assessments of Vaccine-Elicited Neutralizing Antibodies. Journal of Virology, 2014, 88, 2489-2507.	3.4	274
28	Distinct Mechanisms Regulate Exposure of Neutralizing Epitopes in the V2 and V3 Loops of HIV-1 Envelope. Journal of Virology, 2014, 88, 12853-12865.	3.4	53
29	Different Pattern of Immunoglobulin Gene Usage by HIV-1 Compared to Non-HIV-1 Antibodies Derived from the Same Infected Subject. PLoS ONE, 2012, 7, e39534.	2.5	30
30	Functional and immunochemical cross-reactivity of V2-specific monoclonal antibodies from HIV-1-infected individuals. Virology, 2012, 427, 198-207.	2.4	85
31	Human Anti-V3 HIV-1 Monoclonal Antibodies Encoded by the VH5-51/VL Lambda Genes Define a Conserved Antigenic Structure. PLoS ONE, 2011, 6, e27780.	2.5	54
32	Quaternary Epitope Specificities of Anti-HIV-1 Neutralizing Antibodies Generated in Rhesus Macaques Infected by the Simian/Human Immunodeficiency Virus SHIV _{SF162P4} . Journal of Virology, 2010, 84, 3443-3453.	3.4	48
33	Anti-V3 Monoclonal Antibodies Display Broad Neutralizing Activities against Multiple HIV-1 Subtypes. PLoS ONE, 2010, 5, e10254.	2.5	128
34	Structural Basis of the Cross-Reactivity of Genetically Related Human Anti-HIV-1 mAbs: Implications for Design of V3-Based Immunogens. Structure, 2009, 17, 1538-1546.	3.3	81
35	Preferential use of the VH5-51 gene segment by the human immune response to code for antibodies against the V3 domain of HIV-1. Molecular Immunology, 2009, 46, 917-926.	2.2	107
36	Cross-Clade Neutralizing Activity of Human Anti-V3 Monoclonal Antibodies Derived from the Cells of Individuals Infected with Non-B Clades of Human Immunodeficiency Virus Type 1. Journal of Virology, 2006, 80, 6865-6872.	3.4	113

MIROSLAW K GORNY

#	Article	IF	CITATIONS
37	Crystal Structures of Human Immunodeficiency Virus Type 1 (HIV-1) Neutralizing Antibody 2219 in Complex with Three Different V3 Peptides Reveal a New Binding Mode for HIV-1 Cross-Reactivity. Journal of Virology, 2006, 80, 6093-6105.	3.4	113
38	Immunoprophylaxis against Mother-to-Child Transmission of HIV-1. PLoS Medicine, 2006, 3, e259.	8.4	5
39	Identification of a New Quaternary Neutralizing Epitope on Human Immunodeficiency Virus Type 1 Virus Particles. Journal of Virology, 2005, 79, 5232-5237.	3.4	142
40	The V3 Loop Is Accessible on the Surface of Most Human Immunodeficiency Virus Type 1 Primary Isolates and Serves as a Neutralization Epitope. Journal of Virology, 2004, 78, 2394-2404.	3.4	111
41	Structural Rationale for the Broad Neutralization of HIV-1 by Human Monoclonal Antibody 447-52D. Structure, 2004, 12, 193-204.	3.3	185
42	Human Monoclonal Antibodies Specific for Conformation-Sensitive Epitopes of V3 Neutralize Human Immunodeficiency Virus Type 1 Primary Isolates from Various Clades. Journal of Virology, 2002, 76, 9035-9045.	3.4	172
43	Effects of Oligomerization on the Epitopes of the Human Immunodeficiency Virus Type 1 Envelope Glycoproteins. Virology, 2000, 267, 220-228.	2.4	48
44	Conserved and Exposed Epitopes on Intact, Native, Primary Human Immunodeficiency Virus Type 1 Virions of Group M. Journal of Virology, 2000, 74, 7096-7107.	3.4	137
45	Generation of Neutralizing Human Monoclonal Antibodies against Parvovirus B19 Proteins. Journal of Virology, 1999, 73, 1974-1979.	3.4	144